Nafees Ahmad , Ghada Eid , Mohamed M. El-Toony , Asif Mahmood
{"title":"Harnessing machine learning for the rational design of high-performance fluorescent dyes","authors":"Nafees Ahmad , Ghada Eid , Mohamed M. El-Toony , Asif Mahmood","doi":"10.1016/j.saa.2025.125918","DOIUrl":null,"url":null,"abstract":"<div><div>The design of fluorescent dyes with optimized performance is crucial for advancements in various fields, including bioimaging, diagnostics, and optoelectronics. Traditional approaches to dye design often rely on trial-and-error experimentation, which can be time-consuming and resource-intensive. 42 ML models are tried for each property. One best model is selected for each property. Gradient boosting regressor is best model for the prediction of excitation values while extra trees regressor is best model for the prediction of emission values. A database of 5000 new dyes is generated and analyzed. 30 dyes with higher excitation and emission values are selected. Synthetic accessibility analysis is done for 30 dyes and majority of dyes are easy to synthesized. Our results demonstrate that ML-assisted design can significantly accelerate the discovery process, reduce the need for costly experimental iterations, and lead to the development of dyes with tailored properties for specific applications.</div></div>","PeriodicalId":433,"journal":{"name":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","volume":"334 ","pages":"Article 125918"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386142525002240","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0
Abstract
The design of fluorescent dyes with optimized performance is crucial for advancements in various fields, including bioimaging, diagnostics, and optoelectronics. Traditional approaches to dye design often rely on trial-and-error experimentation, which can be time-consuming and resource-intensive. 42 ML models are tried for each property. One best model is selected for each property. Gradient boosting regressor is best model for the prediction of excitation values while extra trees regressor is best model for the prediction of emission values. A database of 5000 new dyes is generated and analyzed. 30 dyes with higher excitation and emission values are selected. Synthetic accessibility analysis is done for 30 dyes and majority of dyes are easy to synthesized. Our results demonstrate that ML-assisted design can significantly accelerate the discovery process, reduce the need for costly experimental iterations, and lead to the development of dyes with tailored properties for specific applications.
期刊介绍:
Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy (SAA) is an interdisciplinary journal which spans from basic to applied aspects of optical spectroscopy in chemistry, medicine, biology, and materials science.
The journal publishes original scientific papers that feature high-quality spectroscopic data and analysis. From the broad range of optical spectroscopies, the emphasis is on electronic, vibrational or rotational spectra of molecules, rather than on spectroscopy based on magnetic moments.
Criteria for publication in SAA are novelty, uniqueness, and outstanding quality. Routine applications of spectroscopic techniques and computational methods are not appropriate.
Topics of particular interest of Spectrochimica Acta Part A include, but are not limited to:
Spectroscopy and dynamics of bioanalytical, biomedical, environmental, and atmospheric sciences,
Novel experimental techniques or instrumentation for molecular spectroscopy,
Novel theoretical and computational methods,
Novel applications in photochemistry and photobiology,
Novel interpretational approaches as well as advances in data analysis based on electronic or vibrational spectroscopy.