Molecular engineering enables high-performance hybrid perovskite photodetector

IF 7.1 Chip Pub Date : 2024-12-30 DOI:10.1016/j.chip.2024.100125
Peiding Liu , Xing Zhang , Bolei Zhang , Yong Wang , Wanbiao Hu , Feng Qiu
{"title":"Molecular engineering enables high-performance hybrid perovskite photodetector","authors":"Peiding Liu ,&nbsp;Xing Zhang ,&nbsp;Bolei Zhang ,&nbsp;Yong Wang ,&nbsp;Wanbiao Hu ,&nbsp;Feng Qiu","doi":"10.1016/j.chip.2024.100125","DOIUrl":null,"url":null,"abstract":"<div><div>Highly optical-absorption hybrid perovskites with upgraded stability and superior photoelectronic properties are essential for optoelectronics. However, various defects are generated by the solution-based film quality inevitably produces during the crystallization process, which leads to non-radiative recombination and interface mismatch. In this work, polyvinylpyrrolidone (PVP) molecule layer was implemented as the interfacially multifunctional layer and selective transport layer to fabricate an effective photodetector. Interfacial PVP is conductive to the bond coordination between the PVP molecule and the MAPbI<sub>3</sub> surface, which could lower the work function of the perovskite film and effectively improve its surface morphology so as to isolate it from water and oxygen molecules. The interfacial passivation for the undercoordinated Pb<sup>2+</sup> defects was also verified via first-principles calculations. The electron injection barrier can be regulated via interfacial molecule engineering, leading to the result that the dark current is suppressed by five orders of magnitude to 1.57 × 10<sup>−11</sup> A, and the specific detectivity improved by about three orders of magnitude reaching 2.9 × 10<sup>12</sup> Jones. These results provide a feasible route to fabricate highly sensitive and stable hybrid perovskite photodetectors.</div></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"4 1","pages":"Article 100125"},"PeriodicalIF":7.1000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chip","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2709472324000431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Highly optical-absorption hybrid perovskites with upgraded stability and superior photoelectronic properties are essential for optoelectronics. However, various defects are generated by the solution-based film quality inevitably produces during the crystallization process, which leads to non-radiative recombination and interface mismatch. In this work, polyvinylpyrrolidone (PVP) molecule layer was implemented as the interfacially multifunctional layer and selective transport layer to fabricate an effective photodetector. Interfacial PVP is conductive to the bond coordination between the PVP molecule and the MAPbI3 surface, which could lower the work function of the perovskite film and effectively improve its surface morphology so as to isolate it from water and oxygen molecules. The interfacial passivation for the undercoordinated Pb2+ defects was also verified via first-principles calculations. The electron injection barrier can be regulated via interfacial molecule engineering, leading to the result that the dark current is suppressed by five orders of magnitude to 1.57 × 10−11 A, and the specific detectivity improved by about three orders of magnitude reaching 2.9 × 1012 Jones. These results provide a feasible route to fabricate highly sensitive and stable hybrid perovskite photodetectors.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分子工程使高性能混合钙钛矿光电探测器成为可能
具有高稳定性和优异光电性能的高光吸收杂化钙钛矿在光电子学中是必不可少的。然而,结晶过程中不可避免地会产生以溶液为基础的膜质量所产生的各种缺陷,导致非辐射复合和界面失配。本研究利用聚乙烯吡咯烷酮(PVP)分子层作为界面多功能层和选择性传输层,制备了一种有效的光电探测器。界面PVP有利于PVP分子与MAPbI3表面的键配合,可以降低钙钛矿膜的功函数,有效改善其表面形貌,使其与水、氧分子隔离。通过第一性原理计算验证了欠配位Pb2+缺陷的界面钝化。通过界面分子工程可以调节电子注入势垒,使暗电流被抑制5个数量级,达到1.57 × 10−11 A,比探测率提高约3个数量级,达到2.9 × 1012 Jones。这些结果为制备高灵敏度、高稳定性的杂化钙钛矿光电探测器提供了一条可行的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
期刊最新文献
A hybrid algorithm-driven approach for efficient design of terahertz molecule-specific metasensors Two-dimensional materials-based artificial neuron devices and their working mechanism Laser direct lithography of large-area three-dimensional integrated photonics: Technological challenges and advances On-chip signal isolation based on mode orthogonality in plasmonic dual-mode transmission line Integrated colloidal quantum dot devices for on-chip light sources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1