Enhancing soil organic carbon prediction by unraveling the role of crop residue coverage using interpretable machine learning

IF 5.6 1区 农林科学 Q1 SOIL SCIENCE Geoderma Pub Date : 2025-02-21 DOI:10.1016/j.geoderma.2025.117225
Yi Dong , Xinting Wang , Sheng Wang , Baoguo Li , Junming Liu , Jianxi Huang , Xuecao Li , Yelu Zeng , Wei Su
{"title":"Enhancing soil organic carbon prediction by unraveling the role of crop residue coverage using interpretable machine learning","authors":"Yi Dong ,&nbsp;Xinting Wang ,&nbsp;Sheng Wang ,&nbsp;Baoguo Li ,&nbsp;Junming Liu ,&nbsp;Jianxi Huang ,&nbsp;Xuecao Li ,&nbsp;Yelu Zeng ,&nbsp;Wei Su","doi":"10.1016/j.geoderma.2025.117225","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate regional mapping of soil organic carbon (SOC) in croplands is essential for assessing soil carbon sequestration potential. However, accurate SOC mapping of cropland at a regional scale is challenging due to numerous natural and anthropogenic management factors. The impact of covered crop residue remains undervalued when mapping surface SOC, despite the significant impact of crop residue coverage (CRC) on SOC. In particular, the agricultural management practice of returning crop residues to the soil significantly alters the spatio temporal patterns of SOC in northeast China. Given these issues, we used the Shapley Additive exPlanations (SHAP) approach to interpret the influence of natural and anthropogenic factors on SOC estimation using the random forest model. Our results show the high SHAP values of air temperature, CRC, and clay content due to their significant influence on SOC estimation. Interestingly, our analysis showed a significant increase in SHAP values when the CRC reached 0.30, which refers to the CRC threshold of conservation tillage. Furthermore, our results revealed that integrating crop residue coverage significantly improved the accuracy of SOC mapping as the Lin Concordance Correlation Coefficient (LCCC) increased from 0.75 to 0.83 and the root mean squared error (RMSE) decreased from 6.70 g kg<sup>−1</sup> to 5.60 g kg<sup>−1</sup>. This study provides actionable insights for optimizing CRC management practices for SOC sequestration in Northeast China.</div></div>","PeriodicalId":12511,"journal":{"name":"Geoderma","volume":"455 ","pages":"Article 117225"},"PeriodicalIF":5.6000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoderma","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016706125000631","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate regional mapping of soil organic carbon (SOC) in croplands is essential for assessing soil carbon sequestration potential. However, accurate SOC mapping of cropland at a regional scale is challenging due to numerous natural and anthropogenic management factors. The impact of covered crop residue remains undervalued when mapping surface SOC, despite the significant impact of crop residue coverage (CRC) on SOC. In particular, the agricultural management practice of returning crop residues to the soil significantly alters the spatio temporal patterns of SOC in northeast China. Given these issues, we used the Shapley Additive exPlanations (SHAP) approach to interpret the influence of natural and anthropogenic factors on SOC estimation using the random forest model. Our results show the high SHAP values of air temperature, CRC, and clay content due to their significant influence on SOC estimation. Interestingly, our analysis showed a significant increase in SHAP values when the CRC reached 0.30, which refers to the CRC threshold of conservation tillage. Furthermore, our results revealed that integrating crop residue coverage significantly improved the accuracy of SOC mapping as the Lin Concordance Correlation Coefficient (LCCC) increased from 0.75 to 0.83 and the root mean squared error (RMSE) decreased from 6.70 g kg−1 to 5.60 g kg−1. This study provides actionable insights for optimizing CRC management practices for SOC sequestration in Northeast China.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Geoderma
Geoderma 农林科学-土壤科学
CiteScore
11.80
自引率
6.60%
发文量
597
审稿时长
58 days
期刊介绍: Geoderma - the global journal of soil science - welcomes authors, readers and soil research from all parts of the world, encourages worldwide soil studies, and embraces all aspects of soil science and its associated pedagogy. The journal particularly welcomes interdisciplinary work focusing on dynamic soil processes and functions across space and time.
期刊最新文献
Securing the future of soil science: Addressing global demographic barriers to engage youth and accelerate early careers Tree species richness affects the trophic structure of soil oribatid mites via litter functional diversity and canopy cover: Evidence from stable isotope analysis (15N, 13C) Introducing a volume change function in process-based modelling of soil development due to land management: A proof of concept Enhancing soil organic carbon prediction by unraveling the role of crop residue coverage using interpretable machine learning Quantitative evaluation of carbon dioxide emissions from the subsoils of volcanic and non-volcanic ash soils in temperate forest ecosystems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1