Mechanisms of fine-grained sedimentation and reservoir characteristics of shale oil in continental freshwater lacustrine basin: A case study from Chang 73 sub-member of Triassic Yanchang Formation in southwestern Ordos Basin, NW China

IF 7 Q1 ENERGY & FUELS Petroleum Exploration and Development Pub Date : 2025-02-01 DOI:10.1016/S1876-3804(25)60007-3
Xianyang LIU , Jiangyan LIU , Xiujuan WANG , Qiheng GUO , Lv Qiqi , Zhi YANG , Yan ZHANG , Zhongyi ZHANG , Wenxuan ZHANG
{"title":"Mechanisms of fine-grained sedimentation and reservoir characteristics of shale oil in continental freshwater lacustrine basin: A case study from Chang 73 sub-member of Triassic Yanchang Formation in southwestern Ordos Basin, NW China","authors":"Xianyang LIU ,&nbsp;Jiangyan LIU ,&nbsp;Xiujuan WANG ,&nbsp;Qiheng GUO ,&nbsp;Lv Qiqi ,&nbsp;Zhi YANG ,&nbsp;Yan ZHANG ,&nbsp;Zhongyi ZHANG ,&nbsp;Wenxuan ZHANG","doi":"10.1016/S1876-3804(25)60007-3","DOIUrl":null,"url":null,"abstract":"<div><div>Based on recent advancements in shale oil exploration within the Ordos Basin, this study presents a comprehensive investigation of the paleoenvironment, lithofacies assemblages and distribution, depositional mechanisms, and reservoir characteristics of shale oil of fine-grained sediment deposition in continental freshwater lacustrine basins, with a focus on the Chang 7<sub>3</sub> sub-member of Triassic Yanchang Formation. The research integrates a variety of exploration data, including field outcrops, drilling, logging, core samples, geochemical analyses, and flume simulation. The study indicates that: (1) The paleoenvironment of the Chang 7<sub>3</sub> deposition is characterized by a warm and humid climate, frequent monsoon events, and a large water depth of freshwater lacustrine basin. The paleogeomorphology exhibits an asymmetrical pattern, with steep slopes in the southwest and gentle slopes in the northeast, which can be subdivided into microgeomorphological units, including depressions and ridges in lakebed, as well as ancient channels. (2) The Chang 7<sub>3</sub> sub-member is characterized by a diverse array of fine-grained sediments, including very fine sandstone, siltstone, mudstone and tuff. These sediments are primarily distributed in thin interbedded and laminated arrangements vertically. The overall grain size of the sandstone predominantly falls below 62.5 μm, with individual layer thicknesses of 0.05–0.64 m. The deposits contain intact plant fragments and display various sedimentary structure, such as wavy bedding, inverse-to-normal grading sequence, and climbing ripple bedding, which indicating a depositional origin associated with density flows. (3) Flume simulation experiments have successfully replicated the transport processes and sedimentary characteristics associated with density flows. The initial phase is characterized by a density-velocity differential, resulting in a thicker, coarser sediment layer at the flow front, while the upper layers are thinner and finer in grain size. During the mid-phase, sliding water effects cause the fluid front to rise and facilitate rapid forward transport. This process generates multiple “new fronts”, enabling the long-distance transport of fine-grained sandstones, such as siltstone and argillaceous siltstone, into the center of the lake basin. (4) A sedimentary model primarily controlled by hyperpynal flows was established for the southwestern part of the basin, highlighting that the frequent occurrence of flood events and the steep slope topography in this area are primary controlling factors for the development of hyperpynal flows. (5) Sandstone and mudstone in the Chang 7<sub>3</sub> sub-member exhibit micro- and nano-scale pore-throat systems, shale oil is present in various lithologies, while the content of movable oil varies considerably, with sandstone exhibiting the highest content of movable oil. (6) The fine-grained sediment complexes formed by multiple episodes of sandstones and mudstones associated with density flow in the Chang 7<sub>3</sub> formation exhibit characteristics of “overall oil-bearing with differential storage capacity”. The combination of mudstone with low total organic carbon content (TOC) and siltstone is identified as the most favorable exploration target at present.</div></div>","PeriodicalId":67426,"journal":{"name":"Petroleum Exploration and Development","volume":"52 1","pages":"Pages 95-111"},"PeriodicalIF":7.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Exploration and Development","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1876380425600073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Based on recent advancements in shale oil exploration within the Ordos Basin, this study presents a comprehensive investigation of the paleoenvironment, lithofacies assemblages and distribution, depositional mechanisms, and reservoir characteristics of shale oil of fine-grained sediment deposition in continental freshwater lacustrine basins, with a focus on the Chang 73 sub-member of Triassic Yanchang Formation. The research integrates a variety of exploration data, including field outcrops, drilling, logging, core samples, geochemical analyses, and flume simulation. The study indicates that: (1) The paleoenvironment of the Chang 73 deposition is characterized by a warm and humid climate, frequent monsoon events, and a large water depth of freshwater lacustrine basin. The paleogeomorphology exhibits an asymmetrical pattern, with steep slopes in the southwest and gentle slopes in the northeast, which can be subdivided into microgeomorphological units, including depressions and ridges in lakebed, as well as ancient channels. (2) The Chang 73 sub-member is characterized by a diverse array of fine-grained sediments, including very fine sandstone, siltstone, mudstone and tuff. These sediments are primarily distributed in thin interbedded and laminated arrangements vertically. The overall grain size of the sandstone predominantly falls below 62.5 μm, with individual layer thicknesses of 0.05–0.64 m. The deposits contain intact plant fragments and display various sedimentary structure, such as wavy bedding, inverse-to-normal grading sequence, and climbing ripple bedding, which indicating a depositional origin associated with density flows. (3) Flume simulation experiments have successfully replicated the transport processes and sedimentary characteristics associated with density flows. The initial phase is characterized by a density-velocity differential, resulting in a thicker, coarser sediment layer at the flow front, while the upper layers are thinner and finer in grain size. During the mid-phase, sliding water effects cause the fluid front to rise and facilitate rapid forward transport. This process generates multiple “new fronts”, enabling the long-distance transport of fine-grained sandstones, such as siltstone and argillaceous siltstone, into the center of the lake basin. (4) A sedimentary model primarily controlled by hyperpynal flows was established for the southwestern part of the basin, highlighting that the frequent occurrence of flood events and the steep slope topography in this area are primary controlling factors for the development of hyperpynal flows. (5) Sandstone and mudstone in the Chang 73 sub-member exhibit micro- and nano-scale pore-throat systems, shale oil is present in various lithologies, while the content of movable oil varies considerably, with sandstone exhibiting the highest content of movable oil. (6) The fine-grained sediment complexes formed by multiple episodes of sandstones and mudstones associated with density flow in the Chang 73 formation exhibit characteristics of “overall oil-bearing with differential storage capacity”. The combination of mudstone with low total organic carbon content (TOC) and siltstone is identified as the most favorable exploration target at present.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.50
自引率
0.00%
发文量
473
期刊最新文献
Theories and applications of phase-change related rock mechanics in oil and gas reservoirs Control of structure and fluid on ultra-deep fault-controlled carbonate fracture-vug reservoirs in the Tarim Basin, NW China Phase behavior of CO2-shale oil in nanopores An intelligent separated zone oil production technology based on electromagnetic coupling principle Oil production characteristics and CO2 storage mechanisms of CO2 flooding in ultra-low permeability sandstone oil reservoirs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1