{"title":"Adsorption damage mechanism and control of fracturing fluid thickener in deep coal rock","authors":"Lijun YOU, Rui QIAN, Yili KANG, Yijun WANG","doi":"10.1016/S1876-3804(25)60015-2","DOIUrl":null,"url":null,"abstract":"<div><div>Static adsorption and dynamic damage experiments were carried out on typical 8<sup>#</sup> deep coal rock of the Carboniferous Benxi Formation in the Ordos Basin, NW China, to evaluate the adsorption capacity of hydroxypropyl guar gum and polyacrylamide as fracturing fluid thickeners on deep coal rock surface and the permeability damage caused by adsorption. The adsorption morphology of the thickener was quantitatively characterized by atomic force microscopy, and the main controlling factors of the thickener adsorption were analyzed. Meanwhile, the adsorption mechanism of the thickener was revealed by Zeta potential, Fourier infrared spectroscopy and X-ray photoelectron spectroscopy. The results show that the adsorption capacity of hydroxypropyl guar gum on deep coal surface is 3.86 mg/g, and the permeability of coal rock after adsorption decreases by 35.24%–37.01%. The adsorption capacity of polyacrylamide is 3.29 mg/g, and the permeability of coal rock after adsorption decreases by 14.31%–21.93%. The thickness of the thickener adsorption layer is positively correlated with the mass fraction of thickener and negatively correlated with temperature, and a decrease in pH will reduce the thickness of the hydroxypropyl guar gum adsorption layer and make the distribution frequency of the thickness of polyacrylamide adsorption layer more concentrated. Functional group condensation and intermolecular force are chemical and physical forces for adsorbing fracturing fluid thickener in deep coal rock. Optimization of thickener mass fraction, chemical modification of thickener molecular, oxidative thermal degradation of polymer and addition of desorption agent can reduce the potential damages on micro-nano pores and cracks in coal rock.</div></div>","PeriodicalId":67426,"journal":{"name":"Petroleum Exploration and Development","volume":"52 1","pages":"Pages 208-218"},"PeriodicalIF":7.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Exploration and Development","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1876380425600152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Static adsorption and dynamic damage experiments were carried out on typical 8# deep coal rock of the Carboniferous Benxi Formation in the Ordos Basin, NW China, to evaluate the adsorption capacity of hydroxypropyl guar gum and polyacrylamide as fracturing fluid thickeners on deep coal rock surface and the permeability damage caused by adsorption. The adsorption morphology of the thickener was quantitatively characterized by atomic force microscopy, and the main controlling factors of the thickener adsorption were analyzed. Meanwhile, the adsorption mechanism of the thickener was revealed by Zeta potential, Fourier infrared spectroscopy and X-ray photoelectron spectroscopy. The results show that the adsorption capacity of hydroxypropyl guar gum on deep coal surface is 3.86 mg/g, and the permeability of coal rock after adsorption decreases by 35.24%–37.01%. The adsorption capacity of polyacrylamide is 3.29 mg/g, and the permeability of coal rock after adsorption decreases by 14.31%–21.93%. The thickness of the thickener adsorption layer is positively correlated with the mass fraction of thickener and negatively correlated with temperature, and a decrease in pH will reduce the thickness of the hydroxypropyl guar gum adsorption layer and make the distribution frequency of the thickness of polyacrylamide adsorption layer more concentrated. Functional group condensation and intermolecular force are chemical and physical forces for adsorbing fracturing fluid thickener in deep coal rock. Optimization of thickener mass fraction, chemical modification of thickener molecular, oxidative thermal degradation of polymer and addition of desorption agent can reduce the potential damages on micro-nano pores and cracks in coal rock.