{"title":"Spinal astrocyte-derived M-CSF mediates microglial reaction and drives visceral hypersensitivity following DSS-induced colitis","authors":"Ke Wu , Shuai Shao , Yu-ting Dong , Yue-ying Liu , Xing-han Chen , Peng Cheng , Xia Qin , Xiao-han Peng , Yong-mei Zhang","doi":"10.1016/j.neuropharm.2025.110373","DOIUrl":null,"url":null,"abstract":"<div><div>Visceral hypersensitivity is one of the most prevalent symptoms of inflammatory bowel disease (IBD), and it can be difficult to cure despite achieving endoscopic remission. Accumulating studies have described that macrophage colony-stimulating factor (M-CSF) modulates neuroinflammation in the central nervous system (CNS) and the development of chronic pain, while the underlying mechanism for whether and how M-CSF/CSF1R signaling pathway regulates visceral hypersensitivity following colitis remains unknown. In the present study, using the dextran sulfate sodium (DSS)-induced colitis model, we determined that microglial accumulation occurred in the spinal dorsal horn during remission phase. The reactive microglia released inflammatory factor, increased neuronal excitability in the dorsal horn, and produced chronic visceral pain behaviors in DSS-treated adult male mice. In addition, we also found significantly increased signaling mediated by astrocytic M-CSF and microglial CSF1R in dorsal horn in the mice with colitis. Exogenous M-CSF induced microglial activation, neuronal hyperactivity and behavioral hypersensitivity in the control group, inhibition of astrocyte/microglia by fluorocitrate/minocycline significantly suppressed microglial and neuronal activity, and relieved the visceral hypersensitivity in the model mice. Overall, our experimental study uncovers the critical involvement of spinal astrocyte-derived M-CSF and reactive microglia in the initiation and maintenance of visceral hypersensitivity following colitis, thereby identifying spinal M-CSF as a target for treating chronic visceral pain. This may provide more accurate theoretical guidance for clinical patients with IBD.</div></div>","PeriodicalId":19139,"journal":{"name":"Neuropharmacology","volume":"270 ","pages":"Article 110373"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0028390825000796","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Visceral hypersensitivity is one of the most prevalent symptoms of inflammatory bowel disease (IBD), and it can be difficult to cure despite achieving endoscopic remission. Accumulating studies have described that macrophage colony-stimulating factor (M-CSF) modulates neuroinflammation in the central nervous system (CNS) and the development of chronic pain, while the underlying mechanism for whether and how M-CSF/CSF1R signaling pathway regulates visceral hypersensitivity following colitis remains unknown. In the present study, using the dextran sulfate sodium (DSS)-induced colitis model, we determined that microglial accumulation occurred in the spinal dorsal horn during remission phase. The reactive microglia released inflammatory factor, increased neuronal excitability in the dorsal horn, and produced chronic visceral pain behaviors in DSS-treated adult male mice. In addition, we also found significantly increased signaling mediated by astrocytic M-CSF and microglial CSF1R in dorsal horn in the mice with colitis. Exogenous M-CSF induced microglial activation, neuronal hyperactivity and behavioral hypersensitivity in the control group, inhibition of astrocyte/microglia by fluorocitrate/minocycline significantly suppressed microglial and neuronal activity, and relieved the visceral hypersensitivity in the model mice. Overall, our experimental study uncovers the critical involvement of spinal astrocyte-derived M-CSF and reactive microglia in the initiation and maintenance of visceral hypersensitivity following colitis, thereby identifying spinal M-CSF as a target for treating chronic visceral pain. This may provide more accurate theoretical guidance for clinical patients with IBD.
期刊介绍:
Neuropharmacology publishes high quality, original research and review articles within the discipline of neuroscience, especially articles with a neuropharmacological component. However, papers within any area of neuroscience will be considered. The journal does not usually accept clinical research, although preclinical neuropharmacological studies in humans may be considered. The journal only considers submissions in which the chemical structures and compositions of experimental agents are readily available in the literature or disclosed by the authors in the submitted manuscript. Only in exceptional circumstances will natural products be considered, and then only if the preparation is well defined by scientific means. Neuropharmacology publishes articles of any length (original research and reviews).