Analysis and design of concurrent class-F2 power amplifier based on power-series technique

IF 3 3区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Aeu-International Journal of Electronics and Communications Pub Date : 2025-02-21 DOI:10.1016/j.aeue.2025.155722
Jinting Liu , Weimin Shi , Yufeng Zang , Jun Hua , Gaoming Xu , Chunyu Hu , Ke Liu , Yu Li , Mingyu Li
{"title":"Analysis and design of concurrent class-F2 power amplifier based on power-series technique","authors":"Jinting Liu ,&nbsp;Weimin Shi ,&nbsp;Yufeng Zang ,&nbsp;Jun Hua ,&nbsp;Gaoming Xu ,&nbsp;Chunyu Hu ,&nbsp;Ke Liu ,&nbsp;Yu Li ,&nbsp;Mingyu Li","doi":"10.1016/j.aeue.2025.155722","DOIUrl":null,"url":null,"abstract":"<div><div>Though the design procedures of dual-band power amplifiers (PAs) have been thoroughly studied in previous works, these studies have seldom delved into analyze the dual-band PA when it is driven by a concurrent dual-band signal. This paper presents the analysis and design of broadband class-F<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> PA operating in concurrent mode. The class-F<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> PA driven by a concurrent dual-band signal is analyzed using power series technique. It is illustrated that, compared to a concurrent class-B PA, the concurrent class-F<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> PA exhibits an increased output power of 4.8 dB. Furthermore, when excited by a concurrent two-tone signal, the output power decrease of the class-F<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> PA is merely 0.8 dB, as opposed to single-tone signal excitation. A broadband 1.8–2.2 GHz class-F<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> PA supporting concurrent operation is designed and measured in this work. When excited by a single-tone signal, the broadband PA achieves a maximum output power of 41.1–42.4 dBm with a drain efficiency (DE) of 61.8%–67.3%. On the other hand, under the excitation of a concurrent two-tone signal centered at 2.0 GHz, the fabricated PA achieves an output power of 40.0–40.6 dBm with a DE of 60.0%–64.0% across a tone-spacing of 0–400 MHz.</div></div>","PeriodicalId":50844,"journal":{"name":"Aeu-International Journal of Electronics and Communications","volume":"193 ","pages":"Article 155722"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aeu-International Journal of Electronics and Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1434841125000639","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Though the design procedures of dual-band power amplifiers (PAs) have been thoroughly studied in previous works, these studies have seldom delved into analyze the dual-band PA when it is driven by a concurrent dual-band signal. This paper presents the analysis and design of broadband class-F2 PA operating in concurrent mode. The class-F2 PA driven by a concurrent dual-band signal is analyzed using power series technique. It is illustrated that, compared to a concurrent class-B PA, the concurrent class-F2 PA exhibits an increased output power of 4.8 dB. Furthermore, when excited by a concurrent two-tone signal, the output power decrease of the class-F2 PA is merely 0.8 dB, as opposed to single-tone signal excitation. A broadband 1.8–2.2 GHz class-F2 PA supporting concurrent operation is designed and measured in this work. When excited by a single-tone signal, the broadband PA achieves a maximum output power of 41.1–42.4 dBm with a drain efficiency (DE) of 61.8%–67.3%. On the other hand, under the excitation of a concurrent two-tone signal centered at 2.0 GHz, the fabricated PA achieves an output power of 40.0–40.6 dBm with a DE of 60.0%–64.0% across a tone-spacing of 0–400 MHz.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.90
自引率
18.80%
发文量
292
审稿时长
4.9 months
期刊介绍: AEÜ is an international scientific journal which publishes both original works and invited tutorials. The journal''s scope covers all aspects of theory and design of circuits, systems and devices for electronics, signal processing, and communication, including: signal and system theory, digital signal processing network theory and circuit design information theory, communication theory and techniques, modulation, source and channel coding switching theory and techniques, communication protocols optical communications microwave theory and techniques, radar, sonar antennas, wave propagation AEÜ publishes full papers and letters with very short turn around time but a high standard review process. Review cycles are typically finished within twelve weeks by application of modern electronic communication facilities.
期刊最新文献
Analysis and design of concurrent class-F2 power amplifier based on power-series technique Sequences design using orthogonal polynomials to mitigate side-lobes for MIMO radar and SAR imaging application Maximizing secure communication in SWIPT-NOMA with SIC and CSI errors Editorial Board A wideband beam steering transmitarray antenna for Ka-band applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1