Numerical study of mixed convection and thermal enhancement in Williamson ternary nanofluid flow over a non-isothermal wedge using the keller box method

IF 4.4 2区 数学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Mathematics and Computers in Simulation Pub Date : 2025-02-16 DOI:10.1016/j.matcom.2025.02.016
Sushmitha Kannan, Vallampati Ramachandra Prasad
{"title":"Numerical study of mixed convection and thermal enhancement in Williamson ternary nanofluid flow over a non-isothermal wedge using the keller box method","authors":"Sushmitha Kannan,&nbsp;Vallampati Ramachandra Prasad","doi":"10.1016/j.matcom.2025.02.016","DOIUrl":null,"url":null,"abstract":"<div><div>The aim of the present analysis is to examine the mixed convection flow of Williamson ternary <span><math><mrow><mo>(</mo><mi>Ag</mi><mo>,</mo><mi>MgO</mi><mo>,</mo><mi>F</mi><msub><mrow><mi>e</mi></mrow><mrow><mn>3</mn></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>/</mo><mi>water</mi><mo>)</mo><mspace></mspace></mrow></math></span>nanofluid over a non-isothermal wedge. During the study, the dimensional continuity, momentum, energy, and concentration equations are transformed into non-dimensional equations using a non-similarity transformation. Keller box (KBM) numerical solution methods are then applied to analyse the impacts of various dimensionless parameters on velocity, temperature, and concentration. The focus of this research is on two primary instances: the behaviour of Newtonian fluids and the unique properties of Williamson fluids, which are categorized as non-Newtonian. Various factors are analysed in both cases, including the buoyancy ratio<span><math><mrow><mspace></mspace><mrow><mfenced><mrow><mi>N</mi></mrow></mfenced></mrow></mrow></math></span>, mixed convection<span><math><mrow><mspace></mspace><mrow><mfenced><mrow><mi>λ</mi></mrow></mfenced></mrow></mrow></math></span>, Brownian motion<span><math><mrow><mspace></mspace><mrow><mfenced><mrow><msub><mrow><mi>N</mi></mrow><mrow><mi>T</mi></mrow></msub></mrow></mfenced></mrow></mrow></math></span>, thermophoresis<span><math><mrow><mspace></mspace><mrow><mfenced><mrow><msub><mrow><mi>N</mi></mrow><mrow><mi>B</mi></mrow></msub></mrow></mfenced></mrow></mrow></math></span>, and heat source and sink<span><math><mrow><mspace></mspace><mrow><mfenced><mrow><mi>Q</mi></mrow></mfenced></mrow></mrow></math></span> parameters. The Williamson fluid model describes non-Newtonian fluids where viscosity changes with shear rate. The results indicate that variations in the Williamson fluid, buoyancy, and mixed convection parameter result in alterations in the fluid viscosity, subsequently influencing the thermal mass-transfer properties of the fluid. Fluid flow over a wedge surface is utilized in various fields such as aerodynamics, heat transfer, chemical engineering, geophysics, and material processing. The application of the Williamson ternary fluid model, incorporating <span><math><mrow><mi>Ag</mi><mo>,</mo><mi>MgO</mi><mo>,</mo></mrow></math></span> and <span><math><mrow><mi>F</mi><msub><mrow><mi>e</mi></mrow><mrow><mn>3</mn></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow></math></span> nanoparticles dispersed in water flowing over a wedge surface, has the potential to transform heat dissipation in advanced electronic cooling systems. This innovation could significantly boost performance and reliability, particularly in demanding high-power applications, representing a significant advancement in thermal management technology. Finally, the main findings of this article are highlighted in the last section.</div></div>","PeriodicalId":49856,"journal":{"name":"Mathematics and Computers in Simulation","volume":"233 ","pages":"Pages 502-529"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Computers in Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475425000527","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of the present analysis is to examine the mixed convection flow of Williamson ternary (Ag,MgO,Fe3O4/water)nanofluid over a non-isothermal wedge. During the study, the dimensional continuity, momentum, energy, and concentration equations are transformed into non-dimensional equations using a non-similarity transformation. Keller box (KBM) numerical solution methods are then applied to analyse the impacts of various dimensionless parameters on velocity, temperature, and concentration. The focus of this research is on two primary instances: the behaviour of Newtonian fluids and the unique properties of Williamson fluids, which are categorized as non-Newtonian. Various factors are analysed in both cases, including the buoyancy ratioN, mixed convectionλ, Brownian motionNT, thermophoresisNB, and heat source and sinkQ parameters. The Williamson fluid model describes non-Newtonian fluids where viscosity changes with shear rate. The results indicate that variations in the Williamson fluid, buoyancy, and mixed convection parameter result in alterations in the fluid viscosity, subsequently influencing the thermal mass-transfer properties of the fluid. Fluid flow over a wedge surface is utilized in various fields such as aerodynamics, heat transfer, chemical engineering, geophysics, and material processing. The application of the Williamson ternary fluid model, incorporating Ag,MgO, and Fe3O4 nanoparticles dispersed in water flowing over a wedge surface, has the potential to transform heat dissipation in advanced electronic cooling systems. This innovation could significantly boost performance and reliability, particularly in demanding high-power applications, representing a significant advancement in thermal management technology. Finally, the main findings of this article are highlighted in the last section.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非等温楔上Williamson三元纳米流体混合对流和热增强的keller箱法数值研究
本分析旨在研究 Williamson 三元(Ag,MgO,Fe3O4/水)纳米流体在非等温楔上的混合对流。在研究过程中,使用非相似变换将维度连续性、动量、能量和浓度方程转换为非维度方程。然后应用 Keller box (KBM) 数值求解方法分析各种无量纲参数对速度、温度和浓度的影响。本研究的重点是两个主要实例:牛顿流体的行为和 Williamson 流体的独特性质,后者被归类为非牛顿流体。在这两种情况下分析了各种因素,包括浮力比N、混合对流λ、布朗运动NT、热泳NB以及热源和热沉Q参数。威廉姆森流体模型描述了粘度随剪切速率变化的非牛顿流体。结果表明,威廉姆森流体、浮力和混合对流参数的变化会导致流体粘度的改变,进而影响流体的热质传递特性。楔形表面上的流体流动被广泛应用于空气动力学、热传递、化学工程、地球物理学和材料加工等领域。威廉姆森三元流体模型将分散在楔形表面水流中的 Ag、MgO 和 Fe3O4 纳米粒子结合在一起,其应用有可能改变先进电子冷却系统的散热方式。这项创新可以大大提高性能和可靠性,尤其是在要求苛刻的大功率应用中,代表着热管理技术的重大进步。最后,本文的主要研究成果将在最后一节重点介绍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mathematics and Computers in Simulation
Mathematics and Computers in Simulation 数学-计算机:跨学科应用
CiteScore
8.90
自引率
4.30%
发文量
335
审稿时长
54 days
期刊介绍: The aim of the journal is to provide an international forum for the dissemination of up-to-date information in the fields of the mathematics and computers, in particular (but not exclusively) as they apply to the dynamics of systems, their simulation and scientific computation in general. Published material ranges from short, concise research papers to more general tutorial articles. Mathematics and Computers in Simulation, published monthly, is the official organ of IMACS, the International Association for Mathematics and Computers in Simulation (Formerly AICA). This Association, founded in 1955 and legally incorporated in 1956 is a member of FIACC (the Five International Associations Coordinating Committee), together with IFIP, IFAV, IFORS and IMEKO. Topics covered by the journal include mathematical tools in: •The foundations of systems modelling •Numerical analysis and the development of algorithms for simulation They also include considerations about computer hardware for simulation and about special software and compilers. The journal also publishes articles concerned with specific applications of modelling and simulation in science and engineering, with relevant applied mathematics, the general philosophy of systems simulation, and their impact on disciplinary and interdisciplinary research. The journal includes a Book Review section -- and a "News on IMACS" section that contains a Calendar of future Conferences/Events and other information about the Association.
期刊最新文献
A generalized Caputo fractional jerk equation with Caputo antiperiodic boundary conditions: Existence of solutions, stability and numerical simulations Modeling a delay-driven eco-epidemiological system with fear and migration under ratio-dependent predation Secure synchronization of T–S fuzzy complex dynamical networks under critical-data-targeted DoS attacks Two-step optimization of knots in B-spline curve approximation Spherical fuzzy Bézier curve approximation for efficient lane-changing trajectories under uncertain data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1