A novel enhanced Superlet Synchroextracting transform ensemble learning for structural health monitoring using nonlinear wave modulation

IF 7.5 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Engineering Applications of Artificial Intelligence Pub Date : 2025-02-22 DOI:10.1016/j.engappai.2025.110341
Naserodin Sepehry , Mohammad Ehsani , Hamdireza Amindavar , Weidong Zhu , Firooz Bakhtiari Nejad
{"title":"A novel enhanced Superlet Synchroextracting transform ensemble learning for structural health monitoring using nonlinear wave modulation","authors":"Naserodin Sepehry ,&nbsp;Mohammad Ehsani ,&nbsp;Hamdireza Amindavar ,&nbsp;Weidong Zhu ,&nbsp;Firooz Bakhtiari Nejad","doi":"10.1016/j.engappai.2025.110341","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the application of nonlinear wave modulation (NWM) using chirp signals for structural health monitoring (SHM). The implementation of NWM with monoharmonic signals (periodic signals that consist of a single frequency component) poses significant challenges due to the complexity of selecting optimal pump and carrier frequencies, leading to time-intensive processes. In contrast, analyzing NWM with chirp signals introduces additional complexities regarding signal processing compared to monoharmonic excitations. Time-frequency analysis (TFA) has been identified as a crucial method for examining non-stationary signals; however, many existing techniques face limitations in resolution, particularly in the context of chirp signals, as dictated by the Heisenberg uncertainty principle. To address these challenges, the superlet synchroextracting transform (SLSET) is introduced as an innovative TFA approach that combines the strengths of superlet (SL) and synchroextracting transforms, resulting in improved resolution. This research utilizes NWM alongside SLSET to detect boundary loosening in sandwich beams, demonstrating the method's effectiveness in identifying structural damage while maintaining robustness against noise. Results indicate that SLSET significantly enhances the damage index compared to traditional TFA methods. The high resolution achieved allows for the detection of sidebands in vibro-acoustic modulation (VAM) tests conducted at low pump frequencies. Furthermore, three machine learning (ML) models including support vector machine (SVM), Adaptive Boosting (AdaBoost), and Random Forest (RF) were trained. The stack ensemble method combined the outputs of these models, resulting in an overall accuracy of 99.2%. This approach effectively leveraged the strengths of individual models, enhancing generalization and robustness in detecting damage across complex data scenarios. The features extracted using SLSET for VAM data of faulty structure attains a classification accuracy of 98.9%. In contrast, features derived from conventional time-frequency methods fail to identify damage, even in noise-free conditions.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"147 ","pages":"Article 110341"},"PeriodicalIF":7.5000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197625003410","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the application of nonlinear wave modulation (NWM) using chirp signals for structural health monitoring (SHM). The implementation of NWM with monoharmonic signals (periodic signals that consist of a single frequency component) poses significant challenges due to the complexity of selecting optimal pump and carrier frequencies, leading to time-intensive processes. In contrast, analyzing NWM with chirp signals introduces additional complexities regarding signal processing compared to monoharmonic excitations. Time-frequency analysis (TFA) has been identified as a crucial method for examining non-stationary signals; however, many existing techniques face limitations in resolution, particularly in the context of chirp signals, as dictated by the Heisenberg uncertainty principle. To address these challenges, the superlet synchroextracting transform (SLSET) is introduced as an innovative TFA approach that combines the strengths of superlet (SL) and synchroextracting transforms, resulting in improved resolution. This research utilizes NWM alongside SLSET to detect boundary loosening in sandwich beams, demonstrating the method's effectiveness in identifying structural damage while maintaining robustness against noise. Results indicate that SLSET significantly enhances the damage index compared to traditional TFA methods. The high resolution achieved allows for the detection of sidebands in vibro-acoustic modulation (VAM) tests conducted at low pump frequencies. Furthermore, three machine learning (ML) models including support vector machine (SVM), Adaptive Boosting (AdaBoost), and Random Forest (RF) were trained. The stack ensemble method combined the outputs of these models, resulting in an overall accuracy of 99.2%. This approach effectively leveraged the strengths of individual models, enhancing generalization and robustness in detecting damage across complex data scenarios. The features extracted using SLSET for VAM data of faulty structure attains a classification accuracy of 98.9%. In contrast, features derived from conventional time-frequency methods fail to identify damage, even in noise-free conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Engineering Applications of Artificial Intelligence
Engineering Applications of Artificial Intelligence 工程技术-工程:电子与电气
CiteScore
9.60
自引率
10.00%
发文量
505
审稿时长
68 days
期刊介绍: Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.
期刊最新文献
SPARDA: Sparsity-constrained dimensional analysis via convex relaxation for parameter reduction in high-dimensional engineering systems On-board detection of rail corrugation using improved convolutional block attention mechanism Speech emotion recognition based on spiking neural network and convolutional neural network Few-shot machine reading comprehension for bridge inspection via domain-specific and task-aware pre-tuning approach A novel enhanced Superlet Synchroextracting transform ensemble learning for structural health monitoring using nonlinear wave modulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1