Simulation of the turbulent air flow of inhalation and exhalation in the respiratory system using computational fluid dynamics

Q1 Chemical Engineering International Journal of Thermofluids Pub Date : 2025-02-14 DOI:10.1016/j.ijft.2025.101139
Dheyaa J. Jasim , Mustafa Habeeb Chyad , Laith S. Sabri , Soheil Salahshour , Omid Ali Akbari , M. Hekmatifar
{"title":"Simulation of the turbulent air flow of inhalation and exhalation in the respiratory system using computational fluid dynamics","authors":"Dheyaa J. Jasim ,&nbsp;Mustafa Habeeb Chyad ,&nbsp;Laith S. Sabri ,&nbsp;Soheil Salahshour ,&nbsp;Omid Ali Akbari ,&nbsp;M. Hekmatifar","doi":"10.1016/j.ijft.2025.101139","DOIUrl":null,"url":null,"abstract":"<div><div>In this research, the CFD simulation of the respiratory tract was discussed. Limited research was conducted in the field of respiratory systems to examine the respiratory system as a true model for various input structures in inhalation and exhalation, although numerous studies were conducted by researchers. This study aimed to develop a dependable method for obtaining the true respiratory system geometry from a 24-year-old man's CT scan data and preparing it for input into CFD software. this research performs a numerical analysis of the airflow from the nasal inlet in both the inhalation and exhalation modes, using a turbulent airflow mode with a flow rate of 60 liters per minute. The effect of different inputs on the airflow in the human respiratory system is simulated for flat, pipe, and semi-spherical cross sections using CFD for turbulent flow. The results show that the velocity increased as air entered the nasopharynx. In flat, pipe, and semisphere modes, the velocity increased from 2.8 m/s, 2.07 m/s, and 4.14 m/s to 7.41 m/s, 5.48 m/s, and 8.40 m/s, respectively. The Dynamic pressure drop coefficient)C<sub>p</sub>(in flat, pipe, and semisphere modes decreased from 79.38, 34.24, and 69.57 to 32.84, 17.13, and 31.44, respectively. The velocity in flat, pipe, and semisphere modes decreased from 7.46 m/s, 4.45 m/s, and 10.29 m/s to 1.54 m/s, 0.96 m/s, and 2.70 m/s, respectively. In the flat and pipe modes, the Cp increased from 17.17, -5.46, to 34.01, and 29.75, respectively. Velocity increased as air entered the larynx. Numerically, the velocity in flat, pipe, and semisphere modes increased from 5.00 m/s, 2.78 m/s, and 7.35 m/s to 9.06 m/s, 6.56 m/s, and 9.79 m/s, respectively. The C<sub>p</sub> increased in pipe and semisphere modes. Velocity decreases as the air enters the trachea. Numerically, the velocity in flat, pipe, and semisphere modes decreased from 6.69 m/s, 4.86 m/s, and 7.16 m/s to 3.44 m/s, 3.44 m/s, and 3.90 m/s, respectively. The C<sub>p</sub> in the pipe and semisphere modes decreased from 0.77, and -1.59 to -7.33, and -11.51, respectively.</div></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":"26 ","pages":"Article 101139"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666202725000862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

In this research, the CFD simulation of the respiratory tract was discussed. Limited research was conducted in the field of respiratory systems to examine the respiratory system as a true model for various input structures in inhalation and exhalation, although numerous studies were conducted by researchers. This study aimed to develop a dependable method for obtaining the true respiratory system geometry from a 24-year-old man's CT scan data and preparing it for input into CFD software. this research performs a numerical analysis of the airflow from the nasal inlet in both the inhalation and exhalation modes, using a turbulent airflow mode with a flow rate of 60 liters per minute. The effect of different inputs on the airflow in the human respiratory system is simulated for flat, pipe, and semi-spherical cross sections using CFD for turbulent flow. The results show that the velocity increased as air entered the nasopharynx. In flat, pipe, and semisphere modes, the velocity increased from 2.8 m/s, 2.07 m/s, and 4.14 m/s to 7.41 m/s, 5.48 m/s, and 8.40 m/s, respectively. The Dynamic pressure drop coefficient)Cp(in flat, pipe, and semisphere modes decreased from 79.38, 34.24, and 69.57 to 32.84, 17.13, and 31.44, respectively. The velocity in flat, pipe, and semisphere modes decreased from 7.46 m/s, 4.45 m/s, and 10.29 m/s to 1.54 m/s, 0.96 m/s, and 2.70 m/s, respectively. In the flat and pipe modes, the Cp increased from 17.17, -5.46, to 34.01, and 29.75, respectively. Velocity increased as air entered the larynx. Numerically, the velocity in flat, pipe, and semisphere modes increased from 5.00 m/s, 2.78 m/s, and 7.35 m/s to 9.06 m/s, 6.56 m/s, and 9.79 m/s, respectively. The Cp increased in pipe and semisphere modes. Velocity decreases as the air enters the trachea. Numerically, the velocity in flat, pipe, and semisphere modes decreased from 6.69 m/s, 4.86 m/s, and 7.16 m/s to 3.44 m/s, 3.44 m/s, and 3.90 m/s, respectively. The Cp in the pipe and semisphere modes decreased from 0.77, and -1.59 to -7.33, and -11.51, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Thermofluids
International Journal of Thermofluids Engineering-Mechanical Engineering
CiteScore
10.10
自引率
0.00%
发文量
111
审稿时长
66 days
期刊最新文献
A review of carbon and aluminium nanofluids and elastocaloric materials for heating and cooling applications AI-heat transfer analysis of casson fluid in uniformly heated enclosure with semi heated baffle Parametric enviro-economic analysis of cooling photovoltaic panels with phase change materials Improving the thermal performance of a windcatcher employing cooling pipes with annular fins: Numerical evaluation Editorial: Advances in heat transfer science: Enhanced techniques for modern industrial applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1