DPCA: Dynamic multi-prototype cross-attention for change detection unsupervised domain adaptation of remote sensing images

IF 7.6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Knowledge-Based Systems Pub Date : 2025-02-12 DOI:10.1016/j.knosys.2025.113135
Rongbo Fan , Jialin Xie , Junmin Liu , Yan Zhang , Hong Hou , Jianhua Yang
{"title":"DPCA: Dynamic multi-prototype cross-attention for change detection unsupervised domain adaptation of remote sensing images","authors":"Rongbo Fan ,&nbsp;Jialin Xie ,&nbsp;Junmin Liu ,&nbsp;Yan Zhang ,&nbsp;Hong Hou ,&nbsp;Jianhua Yang","doi":"10.1016/j.knosys.2025.113135","DOIUrl":null,"url":null,"abstract":"<div><div>Unsupervised domain adaptation (UDA) is a key technique for enhancing the generalization and reusability of remote sensing image change detection (CD) models. However, the effectiveness of UDA is often hindered by discrepancies in feature distributions and sample imbalances across disparate CD datasets. To address these issues, we propose the Dynamic Multi-Prototype Cross-Attention model for UDA in CD. This approach enhances the representation of complex land cover features by incorporating multi-prototype features into a cross-attention mechanism, while addressing sample imbalance through a novel pseudo-sample generation strategy. The Multi-prototypes and Difference Feature Cross-Attention Module iteratively updates the multi-prototype features and integrates them with a classical two-stream CD model. This allows the model to achieve domain alignment by minimizing the neighborhood distance between the global multi-prototype features and high-confidence target domain prototype features. In addition, we propose the Sample Fusion and Pasting module, that generates new target domain-style samples of changed regions to facilitate CD-UDA training. Experimental evaluations on the LEVIR, GZ, WH, and GD datasets confirm that DPCA model effectively bridges the feature distribution gap between the source and target domains, significantly improving the detection performance on the unlabeled target domain. The source code is available at <span><span>https://github.com/Fanrongbo/DPCA-CD-UDA</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"314 ","pages":"Article 113135"},"PeriodicalIF":7.6000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705125001820","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Unsupervised domain adaptation (UDA) is a key technique for enhancing the generalization and reusability of remote sensing image change detection (CD) models. However, the effectiveness of UDA is often hindered by discrepancies in feature distributions and sample imbalances across disparate CD datasets. To address these issues, we propose the Dynamic Multi-Prototype Cross-Attention model for UDA in CD. This approach enhances the representation of complex land cover features by incorporating multi-prototype features into a cross-attention mechanism, while addressing sample imbalance through a novel pseudo-sample generation strategy. The Multi-prototypes and Difference Feature Cross-Attention Module iteratively updates the multi-prototype features and integrates them with a classical two-stream CD model. This allows the model to achieve domain alignment by minimizing the neighborhood distance between the global multi-prototype features and high-confidence target domain prototype features. In addition, we propose the Sample Fusion and Pasting module, that generates new target domain-style samples of changed regions to facilitate CD-UDA training. Experimental evaluations on the LEVIR, GZ, WH, and GD datasets confirm that DPCA model effectively bridges the feature distribution gap between the source and target domains, significantly improving the detection performance on the unlabeled target domain. The source code is available at https://github.com/Fanrongbo/DPCA-CD-UDA.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
动态多原型交叉关注遥感图像变化检测的无监督域自适应
无监督域自适应是提高遥感图像变化检测模型泛化和可重用性的关键技术。然而,UDA的有效性经常受到不同CD数据集特征分布差异和样本不平衡的阻碍。为了解决这些问题,我们提出了动态多原型交叉注意模型。该方法通过将多原型特征纳入交叉注意机制来增强复杂土地覆盖特征的表示,同时通过一种新的伪样本生成策略来解决样本不平衡问题。多原型和差异特征交叉关注模块迭代更新多原型特征,并将其与经典的双流CD模型集成。这允许模型通过最小化全局多原型特征与高置信度目标域原型特征之间的邻域距离来实现域对齐。此外,我们提出了样本融合和粘贴模块,该模块可以生成变化区域的新目标域风格样本,以方便CD-UDA训练。在LEVIR、GZ、WH和GD数据集上的实验评估证实,DPCA模型有效地弥合了源域和目标域之间的特征分布差距,显著提高了未标记目标域的检测性能。源代码可从https://github.com/Fanrongbo/DPCA-CD-UDA获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Knowledge-Based Systems
Knowledge-Based Systems 工程技术-计算机:人工智能
CiteScore
14.80
自引率
12.50%
发文量
1245
审稿时长
7.8 months
期刊介绍: Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.
期刊最新文献
Editorial Board Visual and textual spaces both matter: Taming CLIP for non-IID federated medical image classification Improved LSTNet-Driven hyperchaotic sequence optimization and its application in multi-Image encryption HiSURF: Hierarchical semantic-guided unified radiance field for generalizing across unseen scenes FasterGCN: Accelerating and enhancing graph convolutional network for recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1