{"title":"Enhanced STIM1 expression drives platelet hyperactivity in diabetes","authors":"Haoxuan Zhong , Maieryemu Waresi , Xu Jia , Junbo Ge","doi":"10.1016/j.bbrc.2025.151510","DOIUrl":null,"url":null,"abstract":"<div><div>Stromal interaction molecule 1 (STIM1), a key regulator of calcium signaling located in the endoplasmic reticulum, is crucial for platelet function. While elevated STIM1 expression is observed in platelets from diabetic patients, its role in diabetes-induced platelet hyperreactivity remains unclear. In this study, we found a positive correlation between STIM1 expression and agonist-induced platelet aggregation in platelets from patients with type 2 diabetes mellitus (T2DM). Platelets with high STIM1 expression exhibited enhanced aggregation, P-selectin release, integrin αIIbβ3 activation, spreading, and clot retraction compared to those with low STIM1 expression. Similar findings were observed in db/db mice. Furthermore, the store-operated calcium entry channel inhibitor CM4620 demonstrated superior antiplatelet and antithrombotic efficacy compared to aspirin in both db/db mice and patients with T2DM. Our results suggest that elevated STIM1 expression contributes to enhanced platelet reactivity in diabetes, and targeting STIM1 may offer a promising novel therapeutic approach for thrombosis prevention in this patient population.</div></div>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"753 ","pages":"Article 151510"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006291X25002244","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Stromal interaction molecule 1 (STIM1), a key regulator of calcium signaling located in the endoplasmic reticulum, is crucial for platelet function. While elevated STIM1 expression is observed in platelets from diabetic patients, its role in diabetes-induced platelet hyperreactivity remains unclear. In this study, we found a positive correlation between STIM1 expression and agonist-induced platelet aggregation in platelets from patients with type 2 diabetes mellitus (T2DM). Platelets with high STIM1 expression exhibited enhanced aggregation, P-selectin release, integrin αIIbβ3 activation, spreading, and clot retraction compared to those with low STIM1 expression. Similar findings were observed in db/db mice. Furthermore, the store-operated calcium entry channel inhibitor CM4620 demonstrated superior antiplatelet and antithrombotic efficacy compared to aspirin in both db/db mice and patients with T2DM. Our results suggest that elevated STIM1 expression contributes to enhanced platelet reactivity in diabetes, and targeting STIM1 may offer a promising novel therapeutic approach for thrombosis prevention in this patient population.
期刊介绍:
Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology
; molecular biology; neurobiology; plant biology and proteomics