n-hexane influence on canola oil adhesion and volumetric properties

IF 3.2 3区 材料科学 Q2 ENGINEERING, CHEMICAL International Journal of Adhesion and Adhesives Pub Date : 2025-02-19 DOI:10.1016/j.ijadhadh.2025.103990
Katarzyna Szymczyk , Anna Zdziennicka , Bronisław Jańczuk , Janusz Lubas , Artur Jaworski , Hubert Kuszewski , Paweł Woś , Rafał Longwic , Przemysław Sander
{"title":"n-hexane influence on canola oil adhesion and volumetric properties","authors":"Katarzyna Szymczyk ,&nbsp;Anna Zdziennicka ,&nbsp;Bronisław Jańczuk ,&nbsp;Janusz Lubas ,&nbsp;Artur Jaworski ,&nbsp;Hubert Kuszewski ,&nbsp;Paweł Woś ,&nbsp;Rafał Longwic ,&nbsp;Przemysław Sander","doi":"10.1016/j.ijadhadh.2025.103990","DOIUrl":null,"url":null,"abstract":"<div><div>Due to the growing interest in the application of canola oil (RO) as a fuel for diesel engines, studies of the adhesion and volumetric properties of mixture of RO with <em>n</em>-hexane (Hex) were carried out. They were based on the measurements of the surface tension, density, viscosity, and contact angle of the RO + Hex mixtures in the range of <em>n</em>-hexane mole fraction from 0 to unity on the polytetrafluoroethylene (PTFE), poly(methyl methacrylate) (PMMA) and the steel surfaces. The properties of the mixed <em>n</em>-hexane and canola oil layer on the steel surface were also determined by measurements of the contact angle for such model liquids as water, formamide and diiodomethane on both balls and a flat steel surface covered with this layer. Moreover, lubricating properties, based on the value of the scuffing load, for RO and its mixtures with Hex in relation to the diesel fuel (DF) were determined. Taking into account the contact angles values, the surface tension components and parameters of the RO + Hex mixtures as well as the steel covered by the layer of this mixture were determined and next used for the adhesion work of <em>n</em>-hexane and canola oil to PTFE and steel considerations. As follows this mixture at the proper composition has good lubrication properties. However, the analysis of the obtained values of the surface tension, density and viscosity of the mixture of canola oil and <em>n</em>-hexane showed that with the appropriate selection of its composition, properties similar to those of diesel fuel can be obtained.</div></div>","PeriodicalId":13732,"journal":{"name":"International Journal of Adhesion and Adhesives","volume":"140 ","pages":"Article 103990"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Adhesion and Adhesives","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143749625000570","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the growing interest in the application of canola oil (RO) as a fuel for diesel engines, studies of the adhesion and volumetric properties of mixture of RO with n-hexane (Hex) were carried out. They were based on the measurements of the surface tension, density, viscosity, and contact angle of the RO + Hex mixtures in the range of n-hexane mole fraction from 0 to unity on the polytetrafluoroethylene (PTFE), poly(methyl methacrylate) (PMMA) and the steel surfaces. The properties of the mixed n-hexane and canola oil layer on the steel surface were also determined by measurements of the contact angle for such model liquids as water, formamide and diiodomethane on both balls and a flat steel surface covered with this layer. Moreover, lubricating properties, based on the value of the scuffing load, for RO and its mixtures with Hex in relation to the diesel fuel (DF) were determined. Taking into account the contact angles values, the surface tension components and parameters of the RO + Hex mixtures as well as the steel covered by the layer of this mixture were determined and next used for the adhesion work of n-hexane and canola oil to PTFE and steel considerations. As follows this mixture at the proper composition has good lubrication properties. However, the analysis of the obtained values of the surface tension, density and viscosity of the mixture of canola oil and n-hexane showed that with the appropriate selection of its composition, properties similar to those of diesel fuel can be obtained.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Adhesion and Adhesives
International Journal of Adhesion and Adhesives 工程技术-材料科学:综合
CiteScore
6.90
自引率
8.80%
发文量
200
审稿时长
8.3 months
期刊介绍: The International Journal of Adhesion and Adhesives draws together the many aspects of the science and technology of adhesive materials, from fundamental research and development work to industrial applications. Subject areas covered include: interfacial interactions, surface chemistry, methods of testing, accumulation of test data on physical and mechanical properties, environmental effects, new adhesive materials, sealants, design of bonded joints, and manufacturing technology.
期刊最新文献
How can calcium silicate-based sealers impact the mineral phase of root dentin after the use of intracanal medications? A chemical and spectroscopic analysis Effect of the joining temperature on the tensile–shear mechanical properties of clinch-adhesive joints in steel and aluminum alloy sheets n-hexane influence on canola oil adhesion and volumetric properties Impact of thermal and humidity conditions on structural epoxy adhesives during medium-term exposure Sericin and gentamicin-enhanced polyurethane-acrylate adhesives for superior adhesion, biocompatibility and antibacterial property
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1