Reduced parenteral glucose supply during neonatal infection attenuates neurological and renal pathology associated with modulation of innate and Th1 immunity

IF 4.2 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochimica et biophysica acta. Molecular basis of disease Pub Date : 2025-02-18 DOI:10.1016/j.bbadis.2025.167723
Jingren Zhong , Ole Bæk , Richard Doughty , Benjamin Meyer Jørgensen , Henrik Elvang Jensen , Thomas Thymann , Per Torp Sangild , Anders Brunse , Duc Ninh Nguyen
{"title":"Reduced parenteral glucose supply during neonatal infection attenuates neurological and renal pathology associated with modulation of innate and Th1 immunity","authors":"Jingren Zhong ,&nbsp;Ole Bæk ,&nbsp;Richard Doughty ,&nbsp;Benjamin Meyer Jørgensen ,&nbsp;Henrik Elvang Jensen ,&nbsp;Thomas Thymann ,&nbsp;Per Torp Sangild ,&nbsp;Anders Brunse ,&nbsp;Duc Ninh Nguyen","doi":"10.1016/j.bbadis.2025.167723","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Premature infants are highly susceptible to infections that can lead to sepsis with life-threatening organ dysfunctions. The clinical practice of high parenteral glucose supply in preterm infants can exacerbate infection outcomes through excessive glycolysis-induced inflammatory response. This in turn can affect the health of vital preterm organs, including the brain and kidneys. We hypothesized that reduced parenteral glucose supply to infected preterm newborns may help protect against pathology in these two key organs.</div></div><div><h3>Methods</h3><div>Cesarean-delivered preterm pigs were nourished with high or low parenteral glucose levels (21 % vs. 5 %), infused with <em>Staphylococcus epidermidis</em> or saline, and monitored in heated, oxygenated incubators until 22 h. Blood, brain, and kidney samples were collected for histological, immunohistological, q-PCR, ELISA, and biochemical analyses.</div></div><div><h3>Results</h3><div>Infection led to multiple pathological changes (e.g. edema), increased inflammation and tissue injury (indicated by gene expression data) in both brain and kidneys of preterm piglets. Reduced glucose supply in infected animals alleviated histopathological manifestations in the brain, and reduced neuroinflammation with enhanced M2 microglial phenotype. Reduced glucose supply also decreased plasma creatinine, and the severity of renal edema, tubular vacuolization and dilatation. Multiple genes related to innate and Th1 immunity in both organs were dampened by reduced glucose supply. Correlation analysis showed that renal inflammation was more closely connected to systemic inflammation compared to neuroinflammation.</div></div><div><h3>Conclusion</h3><div>Reduced glucose supply can reduce renal and neuro-inflammation during neonatal infection, thereby protecting brain and kidney health in infected preterm neonates.</div></div>","PeriodicalId":8821,"journal":{"name":"Biochimica et biophysica acta. Molecular basis of disease","volume":"1871 4","pages":"Article 167723"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular basis of disease","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925443925000687","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Premature infants are highly susceptible to infections that can lead to sepsis with life-threatening organ dysfunctions. The clinical practice of high parenteral glucose supply in preterm infants can exacerbate infection outcomes through excessive glycolysis-induced inflammatory response. This in turn can affect the health of vital preterm organs, including the brain and kidneys. We hypothesized that reduced parenteral glucose supply to infected preterm newborns may help protect against pathology in these two key organs.

Methods

Cesarean-delivered preterm pigs were nourished with high or low parenteral glucose levels (21 % vs. 5 %), infused with Staphylococcus epidermidis or saline, and monitored in heated, oxygenated incubators until 22 h. Blood, brain, and kidney samples were collected for histological, immunohistological, q-PCR, ELISA, and biochemical analyses.

Results

Infection led to multiple pathological changes (e.g. edema), increased inflammation and tissue injury (indicated by gene expression data) in both brain and kidneys of preterm piglets. Reduced glucose supply in infected animals alleviated histopathological manifestations in the brain, and reduced neuroinflammation with enhanced M2 microglial phenotype. Reduced glucose supply also decreased plasma creatinine, and the severity of renal edema, tubular vacuolization and dilatation. Multiple genes related to innate and Th1 immunity in both organs were dampened by reduced glucose supply. Correlation analysis showed that renal inflammation was more closely connected to systemic inflammation compared to neuroinflammation.

Conclusion

Reduced glucose supply can reduce renal and neuro-inflammation during neonatal infection, thereby protecting brain and kidney health in infected preterm neonates.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.30
自引率
0.00%
发文量
218
审稿时长
32 days
期刊介绍: BBA Molecular Basis of Disease addresses the biochemistry and molecular genetics of disease processes and models of human disease. This journal covers aspects of aging, cancer, metabolic-, neurological-, and immunological-based disease. Manuscripts focused on using animal models to elucidate biochemical and mechanistic insight in each of these conditions, are particularly encouraged. Manuscripts should emphasize the underlying mechanisms of disease pathways and provide novel contributions to the understanding and/or treatment of these disorders. Highly descriptive and method development submissions may be declined without full review. The submission of uninvited reviews to BBA - Molecular Basis of Disease is strongly discouraged, and any such uninvited review should be accompanied by a coverletter outlining the compelling reasons why the review should be considered.
期刊最新文献
Differentiation-inducing factor-1 ameliorates liver fibrosis through the reversion of activated hepatic stellate cells Electrical stimulation promotes peripheral nerve regeneration by upregulating glycolysis and oxidative phosphorylation Keloid vasculature reacts to intralesional injection therapies but does not predict the response to treatment: Biopsies from double-blinded, randomized, controlled trial N6-methyladenosine RNA modification in stomach carcinoma: Novel insights into mechanisms and implications for diagnosis and treatment Activation, interaction and intimation of Nrf2 pathway and their mutational studies causing Nrf2 associated cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1