{"title":"Analysis of the Electron Distribution Function Inside of a LaB₆ Hollow Cathode","authors":"Kirk J. Boehm;James D. Rogers;Richard D. Branam","doi":"10.1109/TPS.2025.3527476","DOIUrl":null,"url":null,"abstract":"Langmuir probe measurements have been performed many times in hollow cathodes and remain one of the most commonly used diagnostic methods to determine electron temperature, density, and plasma potential. The objective of this project was to analyze which possible electron processes can also be determined using a single-wire Langmuir probe in combination with the Druyvesteyn electron energy distribution function (EEDF) method. The well-documented JPL NASA LaB6 hollow cathode using argon, without a heater and without an orifice, was chosen for this study. The probe tip was located at the backend of the plasma. The Druyvesteyn EEDF method resulted in three distinct electron population peaks, representing single ionization, secondary electron production due to ion bombardment of the low work function insert, and thermionic electron production. The electron temperature for almost all three peaks decreased slightly with increasing mass flow rate. The electron number density also decreased with mass flow rate; however, each population showed a different rate of decrease. The detection showed different populations for different locations in the upstream plasma sheath. The results of this investigation indicate that thermionic emission, secondary ion bombardment, ionization, and their associated electron extractions can be measured using the Druyvesteyn EEDF method.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"53 1","pages":"63-70"},"PeriodicalIF":1.3000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Plasma Science","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10852584/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
Langmuir probe measurements have been performed many times in hollow cathodes and remain one of the most commonly used diagnostic methods to determine electron temperature, density, and plasma potential. The objective of this project was to analyze which possible electron processes can also be determined using a single-wire Langmuir probe in combination with the Druyvesteyn electron energy distribution function (EEDF) method. The well-documented JPL NASA LaB6 hollow cathode using argon, without a heater and without an orifice, was chosen for this study. The probe tip was located at the backend of the plasma. The Druyvesteyn EEDF method resulted in three distinct electron population peaks, representing single ionization, secondary electron production due to ion bombardment of the low work function insert, and thermionic electron production. The electron temperature for almost all three peaks decreased slightly with increasing mass flow rate. The electron number density also decreased with mass flow rate; however, each population showed a different rate of decrease. The detection showed different populations for different locations in the upstream plasma sheath. The results of this investigation indicate that thermionic emission, secondary ion bombardment, ionization, and their associated electron extractions can be measured using the Druyvesteyn EEDF method.
期刊介绍:
The scope covers all aspects of the theory and application of plasma science. It includes the following areas: magnetohydrodynamics; thermionics and plasma diodes; basic plasma phenomena; gaseous electronics; microwave/plasma interaction; electron, ion, and plasma sources; space plasmas; intense electron and ion beams; laser-plasma interactions; plasma diagnostics; plasma chemistry and processing; solid-state plasmas; plasma heating; plasma for controlled fusion research; high energy density plasmas; industrial/commercial applications of plasma physics; plasma waves and instabilities; and high power microwave and submillimeter wave generation.