Intra-QLAN Connectivity via Graph States: Beyond the Physical Topology

IF 7.9 2区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY IEEE Transactions on Network Science and Engineering Pub Date : 2025-01-09 DOI:10.1109/TNSE.2024.3520856
Francesco Mazza;Marcello Caleffi;Angela Sara Cacciapuoti
{"title":"Intra-QLAN Connectivity via Graph States: Beyond the Physical Topology","authors":"Francesco Mazza;Marcello Caleffi;Angela Sara Cacciapuoti","doi":"10.1109/TNSE.2024.3520856","DOIUrl":null,"url":null,"abstract":"In the near to mid future, Quantum Local Area Networks (QLANs) – the fundamental building block of the Quantum Internet – will unlike exhibit physical topologies characterized by densely physical connections among the nodes. On the contrary, it is pragmatic to consider QLANs based on simpler, scarcely-connected physical topologies, such as star topologies. This constraint, if not properly tackled, will significantly impact the QLAN performance in terms of communication delay and/or overhead. Thankfully, it is possible to create on-demand links between QLAN nodes, without physically deploying them, by properly manipulating a shared multipartite entangled state, namely, a graph state. Thus, it is possible to build an overlay topology, referred to as <italic>artificial topology</i>, upon the physical one, by only performing Local Operations and Classical Communication (LOCC). In this paper, we address the fundamental issue of engineering the artificial topology of a QLAN to bypass the limitations induced by the physical topology. The designed framework relays only on local operations, without exchanging signaling among the client nodes of the QLAN, which, in turn, would introduce further delays in a scenario very sensitive to the decoherence. Finally, by exploiting the artificial topology, it is proved that the troubleshooting is simplified, by overcoming the single point of failure, typical of classical LAN star topologies.","PeriodicalId":54229,"journal":{"name":"IEEE Transactions on Network Science and Engineering","volume":"12 2","pages":"870-887"},"PeriodicalIF":7.9000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10835135","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network Science and Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10835135/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In the near to mid future, Quantum Local Area Networks (QLANs) – the fundamental building block of the Quantum Internet – will unlike exhibit physical topologies characterized by densely physical connections among the nodes. On the contrary, it is pragmatic to consider QLANs based on simpler, scarcely-connected physical topologies, such as star topologies. This constraint, if not properly tackled, will significantly impact the QLAN performance in terms of communication delay and/or overhead. Thankfully, it is possible to create on-demand links between QLAN nodes, without physically deploying them, by properly manipulating a shared multipartite entangled state, namely, a graph state. Thus, it is possible to build an overlay topology, referred to as artificial topology, upon the physical one, by only performing Local Operations and Classical Communication (LOCC). In this paper, we address the fundamental issue of engineering the artificial topology of a QLAN to bypass the limitations induced by the physical topology. The designed framework relays only on local operations, without exchanging signaling among the client nodes of the QLAN, which, in turn, would introduce further delays in a scenario very sensitive to the decoherence. Finally, by exploiting the artificial topology, it is proved that the troubleshooting is simplified, by overcoming the single point of failure, typical of classical LAN star topologies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过图状态的qlan内部连接:超越物理拓扑
在中短期内,量子局域网(QLAN)--量子互联网的基本构件--将不同于以节点间密集物理连接为特征的物理拓扑结构。相反,考虑基于更简单、连接稀少的物理拓扑结构(如星形拓扑结构)的 QLAN 是实用的。如果处理不当,这一限制将在通信延迟和/或开销方面严重影响 QLAN 性能。值得庆幸的是,通过适当操纵共享的多方纠缠状态(即图状态),可以在 QLAN 节点之间创建按需链接,而无需进行物理部署。因此,只需执行本地操作和经典通信(LOCC),就有可能在物理拓扑基础上建立一个覆盖拓扑,即人工拓扑。在本文中,我们要解决的基本问题是如何设计 QLAN 的人工拓扑,以绕过物理拓扑带来的限制。所设计的框架只进行本地操作,而不在 QLAN 客户端节点之间交换信令,这反过来又会在对退相干非常敏感的场景中引入更多延迟。最后,通过利用人工拓扑结构,证明克服了传统局域网星形拓扑结构中典型的单点故障,从而简化了故障排除工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Network Science and Engineering
IEEE Transactions on Network Science and Engineering Engineering-Control and Systems Engineering
CiteScore
12.60
自引率
9.10%
发文量
393
期刊介绍: The proposed journal, called the IEEE Transactions on Network Science and Engineering (TNSE), is committed to timely publishing of peer-reviewed technical articles that deal with the theory and applications of network science and the interconnections among the elements in a system that form a network. In particular, the IEEE Transactions on Network Science and Engineering publishes articles on understanding, prediction, and control of structures and behaviors of networks at the fundamental level. The types of networks covered include physical or engineered networks, information networks, biological networks, semantic networks, economic networks, social networks, and ecological networks. Aimed at discovering common principles that govern network structures, network functionalities and behaviors of networks, the journal seeks articles on understanding, prediction, and control of structures and behaviors of networks. Another trans-disciplinary focus of the IEEE Transactions on Network Science and Engineering is the interactions between and co-evolution of different genres of networks.
期刊最新文献
Routing in Hierarchical Hybrid Satellite Networks: A Survey Multi-Source Localization Based on Graph Representation Learning and Bayesian Optimization Efficient Intrusion Detection for Edge Network via Multi-Stage Few-Shot Class-Incremental Learning BECS: A Privacy-Preserving Computing Resource Sharing Mechanism for 6G Computing Power Network Adaptive Large Language Model for Task Orchestration in 6G Space-Air-Ground Integrated Computing Power Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1