Efficient Design Optimization for Diffractive Deep Neural Networks

IF 2.7 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems Pub Date : 2024-09-26 DOI:10.1109/TCAD.2024.3432632
Kun Wu;Yuncheng Liu;Hui Gao;Jun Tao;Wei Xiong;Xin Li
{"title":"Efficient Design Optimization for Diffractive Deep Neural Networks","authors":"Kun Wu;Yuncheng Liu;Hui Gao;Jun Tao;Wei Xiong;Xin Li","doi":"10.1109/TCAD.2024.3432632","DOIUrl":null,"url":null,"abstract":"Since diffractive deep neural network (D2NN) provides a full optical solution to implement deep neural networks (DNNs), it offers ultrafast operation speed and virtually unlimited bandwidth, yielding an alternative-yet-competitive approach for computer-based neural networks. A D2NN is composed of several 3D-printed phase masks as hidden layers and a number of optical detectors at the output. To enable automatic and efficient design of D2NNs, we propose an iterative optimization method to determine the optimal design parameters of D2NNs. During each iteration step, we first optimize the physical parameters for masks (e.g., thicknesses) while fixing the detector parameters (e.g., locations). Next, we exhaustively search the detector parameters with fixed masks. These two steps are repeated until convergence is reached. Our numerical experiments demonstrate that the proposed optimization algorithm can produce a high-performance D2NN achieving 97% accuracy for recognizing handwritten digits.","PeriodicalId":13251,"journal":{"name":"IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems","volume":"44 3","pages":"1199-1203"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10695761/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Since diffractive deep neural network (D2NN) provides a full optical solution to implement deep neural networks (DNNs), it offers ultrafast operation speed and virtually unlimited bandwidth, yielding an alternative-yet-competitive approach for computer-based neural networks. A D2NN is composed of several 3D-printed phase masks as hidden layers and a number of optical detectors at the output. To enable automatic and efficient design of D2NNs, we propose an iterative optimization method to determine the optimal design parameters of D2NNs. During each iteration step, we first optimize the physical parameters for masks (e.g., thicknesses) while fixing the detector parameters (e.g., locations). Next, we exhaustively search the detector parameters with fixed masks. These two steps are repeated until convergence is reached. Our numerical experiments demonstrate that the proposed optimization algorithm can produce a high-performance D2NN achieving 97% accuracy for recognizing handwritten digits.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.60
自引率
13.80%
发文量
500
审稿时长
7 months
期刊介绍: The purpose of this Transactions is to publish papers of interest to individuals in the area of computer-aided design of integrated circuits and systems composed of analog, digital, mixed-signal, optical, or microwave components. The aids include methods, models, algorithms, and man-machine interfaces for system-level, physical and logical design including: planning, synthesis, partitioning, modeling, simulation, layout, verification, testing, hardware-software co-design and documentation of integrated circuit and system designs of all complexities. Design tools and techniques for evaluating and designing integrated circuits and systems for metrics such as performance, power, reliability, testability, and security are a focus.
期刊最新文献
Table of Contents IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems society information IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems publication information Table of Contents IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems publication information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1