Long-Term Finger Force Predictions Using Motoneuron Discharge Activities

IF 5.6 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Instrumentation and Measurement Pub Date : 2025-02-10 DOI:10.1109/TIM.2025.3540139
Yuwen Ruan;Long Meng;Xiaogang Hu
{"title":"Long-Term Finger Force Predictions Using Motoneuron Discharge Activities","authors":"Yuwen Ruan;Long Meng;Xiaogang Hu","doi":"10.1109/TIM.2025.3540139","DOIUrl":null,"url":null,"abstract":"Surface electromyogram (EMG) signals have been a preferred modality for motor intent detections in the fields of robotic control, rehabilitation, and health monitoring. However, current EMG-based measurement techniques suffer a degradation in performance cross session over time due to factors such as shifts in electrode placement, changes in muscle states, and environmental noise. To address this challenge, we developed a novel neural-drive approach, capable of robust cross-day predictions of individual finger forces. Specifically, high-density EMG (HD-EMG) data were collected from flexor and extensor muscles during single-finger and multifinger tasks. The experimental procedure was repeated three times (sessions), with an average interval of 6.58 days between sessions. We first decomposed the EMG signals in a session to obtain separation matrices that contained motor unit (MU) information in the EMG signals. We then refined the separation matrices that accurately reflected individual fingers. The corresponding separation matrices were applied to EMG signals in the other two sessions to derive the neural drive for force predictions of individual fingers. Our results revealed that the cross-session performance was comparable with the within-session performance. In addition, the neural-drive approach can outperform the conventional EMG-amplitude approach, especially in the cross-session performance. Our developed approach can enhance the long-term reliability of finger force predictions and holds potential for various practical applications.","PeriodicalId":13341,"journal":{"name":"IEEE Transactions on Instrumentation and Measurement","volume":"74 ","pages":"1-10"},"PeriodicalIF":5.6000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Instrumentation and Measurement","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10879017/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Surface electromyogram (EMG) signals have been a preferred modality for motor intent detections in the fields of robotic control, rehabilitation, and health monitoring. However, current EMG-based measurement techniques suffer a degradation in performance cross session over time due to factors such as shifts in electrode placement, changes in muscle states, and environmental noise. To address this challenge, we developed a novel neural-drive approach, capable of robust cross-day predictions of individual finger forces. Specifically, high-density EMG (HD-EMG) data were collected from flexor and extensor muscles during single-finger and multifinger tasks. The experimental procedure was repeated three times (sessions), with an average interval of 6.58 days between sessions. We first decomposed the EMG signals in a session to obtain separation matrices that contained motor unit (MU) information in the EMG signals. We then refined the separation matrices that accurately reflected individual fingers. The corresponding separation matrices were applied to EMG signals in the other two sessions to derive the neural drive for force predictions of individual fingers. Our results revealed that the cross-session performance was comparable with the within-session performance. In addition, the neural-drive approach can outperform the conventional EMG-amplitude approach, especially in the cross-session performance. Our developed approach can enhance the long-term reliability of finger force predictions and holds potential for various practical applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Instrumentation and Measurement
IEEE Transactions on Instrumentation and Measurement 工程技术-工程:电子与电气
CiteScore
9.00
自引率
23.20%
发文量
1294
审稿时长
3.9 months
期刊介绍: Papers are sought that address innovative solutions to the development and use of electrical and electronic instruments and equipment to measure, monitor and/or record physical phenomena for the purpose of advancing measurement science, methods, functionality and applications. The scope of these papers may encompass: (1) theory, methodology, and practice of measurement; (2) design, development and evaluation of instrumentation and measurement systems and components used in generating, acquiring, conditioning and processing signals; (3) analysis, representation, display, and preservation of the information obtained from a set of measurements; and (4) scientific and technical support to establishment and maintenance of technical standards in the field of Instrumentation and Measurement.
期刊最新文献
Table of Contents IEEE Transactions on Instrumentation and Measurement publication information Guest Editorial Special Section on 2023 IEEE International Instrumentation and Measurement Technology Conference Design, Perceptual Modeling, and Grasping Performance Evaluation of Multibranch Flexible Grippers An Anchor-Free Refining Feature Pyramid Network for Dense and Multioriented Wheat Spikes Detection Under UAV
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1