A Machine Learning Predictor for Vertical Displacement Events on EAST

IF 1.5 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS IEEE Transactions on Plasma Science Pub Date : 2025-01-27 DOI:10.1109/TPS.2025.3528970
H. Y. Wang;W. H. Hu;Y. H. Wang;Y. Huang;Y. H. Jia;Z. P. Luo;R. R. Zhang;Q. P. Yuan;B. J. Xiao
{"title":"A Machine Learning Predictor for Vertical Displacement Events on EAST","authors":"H. Y. Wang;W. H. Hu;Y. H. Wang;Y. Huang;Y. H. Jia;Z. P. Luo;R. R. Zhang;Q. P. Yuan;B. J. Xiao","doi":"10.1109/TPS.2025.3528970","DOIUrl":null,"url":null,"abstract":"To obtain higher discharge parameters in experimental advanced superconducting tokamak (EAST) experiments, an elongated plasma configuration is applied. As a result, vertical displacement events (VDEs) are easy to occur, especially for plasma with high vertical instability growth rate. Studying the prediction and avoidance of VDEs is of great importance for the protection of the plasma-facing and structural components of EAST tokamak. Data-driven methods based on supervised learning are widely used in disruption prediction. Labels as the key of the supervised learning are difficult to accurately divide. In this article, we first propose a labeling method based on the Jensen-Shannon (JS) divergence, enabling a specific analysis and evaluating the precursor onset time for each discharge. By comparing prediction accuracy and warning time prior to disruption using different algorithms with dataset collected from EAST experiment of 2021–2023, it is found that random forest (RF) model works best and achieves a success VDE alarm rate of 99.2% with a false alarm rate of 2.1% for nondisruptive discharges. The results show that models trained with dataset collected with class split point found by the JS divergence method from each discharge outperforms models trained with the dataset collected from each discharge with class split point of fixed time before disruption.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"53 1","pages":"136-145"},"PeriodicalIF":1.5000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Plasma Science","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10852610/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

To obtain higher discharge parameters in experimental advanced superconducting tokamak (EAST) experiments, an elongated plasma configuration is applied. As a result, vertical displacement events (VDEs) are easy to occur, especially for plasma with high vertical instability growth rate. Studying the prediction and avoidance of VDEs is of great importance for the protection of the plasma-facing and structural components of EAST tokamak. Data-driven methods based on supervised learning are widely used in disruption prediction. Labels as the key of the supervised learning are difficult to accurately divide. In this article, we first propose a labeling method based on the Jensen-Shannon (JS) divergence, enabling a specific analysis and evaluating the precursor onset time for each discharge. By comparing prediction accuracy and warning time prior to disruption using different algorithms with dataset collected from EAST experiment of 2021–2023, it is found that random forest (RF) model works best and achieves a success VDE alarm rate of 99.2% with a false alarm rate of 2.1% for nondisruptive discharges. The results show that models trained with dataset collected with class split point found by the JS divergence method from each discharge outperforms models trained with the dataset collected from each discharge with class split point of fixed time before disruption.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EAST上垂直位移事件的机器学习预测器
为了在先进超导托卡马克(EAST)实验中获得更高的放电参数,采用了拉长等离子体结构。因此,垂直位移事件(VDEs)很容易发生,特别是对于垂直不稳定增长率高的等离子体。研究vde的预测和避免对EAST托卡马克的等离子体面和结构元件的保护具有重要意义。基于监督学习的数据驱动方法在中断预测中得到了广泛应用。标签作为监督学习的关键,很难准确划分。在本文中,我们首先提出了一种基于Jensen-Shannon (JS)散度的标记方法,可以对每次放电的前兆发作时间进行具体的分析和评估。利用2021-2023年EAST实验数据,比较不同算法的预测精度和中断前预警时间,发现随机森林(RF)模型效果最好,对非中断放电的VDE成功率为99.2%,虚警率为2.1%。结果表明,使用JS发散方法在每次放电中找到的类分裂点收集的数据集训练的模型优于使用在中断前固定时间的每次放电中收集的类分裂点收集的数据集训练的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Plasma Science
IEEE Transactions on Plasma Science 物理-物理:流体与等离子体
CiteScore
3.00
自引率
20.00%
发文量
538
审稿时长
3.8 months
期刊介绍: The scope covers all aspects of the theory and application of plasma science. It includes the following areas: magnetohydrodynamics; thermionics and plasma diodes; basic plasma phenomena; gaseous electronics; microwave/plasma interaction; electron, ion, and plasma sources; space plasmas; intense electron and ion beams; laser-plasma interactions; plasma diagnostics; plasma chemistry and processing; solid-state plasmas; plasma heating; plasma for controlled fusion research; high energy density plasmas; industrial/commercial applications of plasma physics; plasma waves and instabilities; and high power microwave and submillimeter wave generation.
期刊最新文献
IEEE Transactions on Plasma Science information for authors Blank Page IEEE Transactions on Plasma Science Special Issue on Discharges and Electrical Insulation in Vacuum Special Issue on the 40th PSSI National Symposium on Plasma Science and Technology (PLASMA 2025) Special Issue on Selected Papers from APSPT-14 May 2027
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1