Daisheng Zhang;Wenxuan Liao;Xiaojun Sun;Wei Chen;Lixia Yang
{"title":"Study on the Electromagnetic Scattering Characteristics of Time-Varying Dusty Plasma Target in the BGK Collision Model-TM Case","authors":"Daisheng Zhang;Wenxuan Liao;Xiaojun Sun;Wei Chen;Lixia Yang","doi":"10.1109/TPS.2024.3520713","DOIUrl":null,"url":null,"abstract":"In this study, the Bhatnagar-Gross–Krook (BGK) collision model for weakly ionized dusty plasmas is obtained and the FDTD iterative equations for dusty plasma in the time-varying case is derived in combination with the Z-finite difference time domain (Z-FDTD) method (2-D TM wave). The electromagnetic (EM) scattering characteristic of a time-varying hypersonic target with a dusty plasma coating in the BGK collision model is studied by calculating the radar scattering cross section (RCS) with varying dust particle radius, dust particle concentration ratio, dusty plasma relaxation time, collision frequency, incident angle, and time-varying laws of electron density in the dusty plasma. Results show that the increase in dust particle radius and concentration, as influenced by the charging effect of dust particles, enhances the scattering of EM waves. This improvement leads to the increment in RCS. The augmented charging and collision frequencies of dusty plasma intensify the collision effect of electrons, ions, and dust particles, which decreases RCS. In addition, the effects of different incident angles and time-varying laws on the RCS are analyzed. In addition, the change in incident angle causes deviations in the overall change in RCS. Furthermore, different time-varying laws change the oscillation amplitude of RCS to some extent. These results provide theoretical support for solving the “communication blackout” problem.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"53 1","pages":"116-121"},"PeriodicalIF":1.3000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Plasma Science","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10840317/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the Bhatnagar-Gross–Krook (BGK) collision model for weakly ionized dusty plasmas is obtained and the FDTD iterative equations for dusty plasma in the time-varying case is derived in combination with the Z-finite difference time domain (Z-FDTD) method (2-D TM wave). The electromagnetic (EM) scattering characteristic of a time-varying hypersonic target with a dusty plasma coating in the BGK collision model is studied by calculating the radar scattering cross section (RCS) with varying dust particle radius, dust particle concentration ratio, dusty plasma relaxation time, collision frequency, incident angle, and time-varying laws of electron density in the dusty plasma. Results show that the increase in dust particle radius and concentration, as influenced by the charging effect of dust particles, enhances the scattering of EM waves. This improvement leads to the increment in RCS. The augmented charging and collision frequencies of dusty plasma intensify the collision effect of electrons, ions, and dust particles, which decreases RCS. In addition, the effects of different incident angles and time-varying laws on the RCS are analyzed. In addition, the change in incident angle causes deviations in the overall change in RCS. Furthermore, different time-varying laws change the oscillation amplitude of RCS to some extent. These results provide theoretical support for solving the “communication blackout” problem.
期刊介绍:
The scope covers all aspects of the theory and application of plasma science. It includes the following areas: magnetohydrodynamics; thermionics and plasma diodes; basic plasma phenomena; gaseous electronics; microwave/plasma interaction; electron, ion, and plasma sources; space plasmas; intense electron and ion beams; laser-plasma interactions; plasma diagnostics; plasma chemistry and processing; solid-state plasmas; plasma heating; plasma for controlled fusion research; high energy density plasmas; industrial/commercial applications of plasma physics; plasma waves and instabilities; and high power microwave and submillimeter wave generation.