{"title":"Investigation on Large-Amplitude Ion-Acoustic Shock in Negative Ion Plasma","authors":"Pallabi Pathak;H. Bailung","doi":"10.1109/TPS.2024.3522894","DOIUrl":null,"url":null,"abstract":"Evolution of large-amplitude ion-acoustic shock in plasma containing electrons, <inline-formula> <tex-math>$\\text {Ar}^{+}$ </tex-math></inline-formula> and <inline-formula> <tex-math>$\\text {F}^{-}$ </tex-math></inline-formula> ions, has been investigated. As for the extremely high-amplitude shock wave in multicomponent plasma with negative ions, we achieved a density perturbation of ~70%, in contrast to the ~15% density perturbation observed in an electron-ion plasma. The numerical results of well-known Korteweg-de Vries (KdV)–Burger equation were employed in order to compare our exquisite observations. Furthermore, we explore the impact of enhanced Landau damping on the large-amplitude shocks in the plasma containing negative ions. The negative-to-positive ion density ratio is kept at approximately <inline-formula> <tex-math>$r(=n_{-}{/}{n}_{+})\\sim 0.25$ </tex-math></inline-formula>.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"53 1","pages":"3-11"},"PeriodicalIF":1.3000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Plasma Science","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10845071/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
Evolution of large-amplitude ion-acoustic shock in plasma containing electrons, $\text {Ar}^{+}$ and $\text {F}^{-}$ ions, has been investigated. As for the extremely high-amplitude shock wave in multicomponent plasma with negative ions, we achieved a density perturbation of ~70%, in contrast to the ~15% density perturbation observed in an electron-ion plasma. The numerical results of well-known Korteweg-de Vries (KdV)–Burger equation were employed in order to compare our exquisite observations. Furthermore, we explore the impact of enhanced Landau damping on the large-amplitude shocks in the plasma containing negative ions. The negative-to-positive ion density ratio is kept at approximately $r(=n_{-}{/}{n}_{+})\sim 0.25$ .
期刊介绍:
The scope covers all aspects of the theory and application of plasma science. It includes the following areas: magnetohydrodynamics; thermionics and plasma diodes; basic plasma phenomena; gaseous electronics; microwave/plasma interaction; electron, ion, and plasma sources; space plasmas; intense electron and ion beams; laser-plasma interactions; plasma diagnostics; plasma chemistry and processing; solid-state plasmas; plasma heating; plasma for controlled fusion research; high energy density plasmas; industrial/commercial applications of plasma physics; plasma waves and instabilities; and high power microwave and submillimeter wave generation.