A. Jonidi Jafari, H. Jafari Mansoorian, H. Askarpour, M. Salari, F. Eslami, M. Faraji, F. Shomoossi, H. Abdipour, F. Jaberi Ansari
{"title":"Analyzing and optimizing the adsorption of metronidazole antibiotic on nano-scale pumice mine waste based RSM-CCD technique in water","authors":"A. Jonidi Jafari, H. Jafari Mansoorian, H. Askarpour, M. Salari, F. Eslami, M. Faraji, F. Shomoossi, H. Abdipour, F. Jaberi Ansari","doi":"10.1007/s13762-024-06102-9","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, concerns have increased regarding the presence of antibiotics in water resources. This increase has been caused by the discharge of untreated or incompletely treated pharmaceutical wastewater into aquatic environments. Metronidazole is a widely used antibiotic for the treatment of infections caused by anaerobic bacteria and protozoa. The present study investigated the efficacy of nano-pumice prepared from pumice mine waste as a low-cost adsorbent for metronidazole removal from aqueous environments. The effects of input variables, including pH, contact time, nano-pumice dose, and metronidazole concentration, were investigated. The experimental design was based on central point’s using the response surface method to study adsorption. After optimizing the input variables, isotherm and kinetic studies were conducted. The properties of the adsorbent were characterized through FESEM, XRD, BET, and FTIR analyses. The results indicated that the adsorption process followed a quadratic polynomial model, with F and p values of 990.936 and less than 0.0001, respectively. Additionally, the R<sup>2</sup> was 0.9989, and the Adj-R<sup>2</sup> was 0.9979. The optimal conditions for achieving a removal efficiency of 94.55% and maximum adsorption capacity of 15.313 mg/g were found to be pH = 3, contact time = 60 min, adsorbent dose = 1.5 g/L, and metronidazole concentration = 20 mg/L. Furthermore, the adsorption process aligned with the Langmuir isotherm and pseudo-first-order kinetics, as indicated by R<sup>2</sup> values of 0.9965 and 0.9859, respectively. Therefore, nano-pumice can be suggested as a natural and environmentally friendly adsorbent with significant potential for the adsorption of metronidazole and similar antibiotics from aqueous media.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":589,"journal":{"name":"International Journal of Environmental Science and Technology","volume":"22 6","pages":"4091 - 4108"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Environmental Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s13762-024-06102-9","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, concerns have increased regarding the presence of antibiotics in water resources. This increase has been caused by the discharge of untreated or incompletely treated pharmaceutical wastewater into aquatic environments. Metronidazole is a widely used antibiotic for the treatment of infections caused by anaerobic bacteria and protozoa. The present study investigated the efficacy of nano-pumice prepared from pumice mine waste as a low-cost adsorbent for metronidazole removal from aqueous environments. The effects of input variables, including pH, contact time, nano-pumice dose, and metronidazole concentration, were investigated. The experimental design was based on central point’s using the response surface method to study adsorption. After optimizing the input variables, isotherm and kinetic studies were conducted. The properties of the adsorbent were characterized through FESEM, XRD, BET, and FTIR analyses. The results indicated that the adsorption process followed a quadratic polynomial model, with F and p values of 990.936 and less than 0.0001, respectively. Additionally, the R2 was 0.9989, and the Adj-R2 was 0.9979. The optimal conditions for achieving a removal efficiency of 94.55% and maximum adsorption capacity of 15.313 mg/g were found to be pH = 3, contact time = 60 min, adsorbent dose = 1.5 g/L, and metronidazole concentration = 20 mg/L. Furthermore, the adsorption process aligned with the Langmuir isotherm and pseudo-first-order kinetics, as indicated by R2 values of 0.9965 and 0.9859, respectively. Therefore, nano-pumice can be suggested as a natural and environmentally friendly adsorbent with significant potential for the adsorption of metronidazole and similar antibiotics from aqueous media.
期刊介绍:
International Journal of Environmental Science and Technology (IJEST) is an international scholarly refereed research journal which aims to promote the theory and practice of environmental science and technology, innovation, engineering and management.
A broad outline of the journal''s scope includes: peer reviewed original research articles, case and technical reports, reviews and analyses papers, short communications and notes to the editor, in interdisciplinary information on the practice and status of research in environmental science and technology, both natural and man made.
The main aspects of research areas include, but are not exclusive to; environmental chemistry and biology, environments pollution control and abatement technology, transport and fate of pollutants in the environment, concentrations and dispersion of wastes in air, water, and soil, point and non-point sources pollution, heavy metals and organic compounds in the environment, atmospheric pollutants and trace gases, solid and hazardous waste management; soil biodegradation and bioremediation of contaminated sites; environmental impact assessment, industrial ecology, ecological and human risk assessment; improved energy management and auditing efficiency and environmental standards and criteria.