N. Mohammadpour, M. Abbasi, S. Riahi, N. Salehi Ardali
{"title":"Experimental investigation of CO2 absorption enhancement with functionalized MWCNT","authors":"N. Mohammadpour, M. Abbasi, S. Riahi, N. Salehi Ardali","doi":"10.1007/s13762-024-06085-7","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigated the CO<sub>2</sub> absorption on the functionalized multi-walled carbon nanotubes with 1,8-diaminooctane (aMWCNT) in pure water solution and N-methyl diethanolamine (MDEA). Hexadecyltrimethylammonium bromide (CTAB) was used as a surfactant to disperse the nanofluid solution. The results showed that at a concentration of 0.005 wt% aMWCNT in water at 16 bar, the CO<sub>2</sub> absorption capacity increased by 17.5% compared to pure water. It was found that adding aMWCNT to 15wt% MDEA solution improves the absorption rate. However, the highest absorption was at 0.005wt% aMWCNT in the solvent. The absorption capacity increased to 59% at the highest pressure in 15%wt MDEA solution, including aMWCNT, compared to 15%wt MDEA solution. It can be concluded that adding aMWCNT has advantages such as increasing the absorption capacity and reducing the heat of absorption.</p></div>","PeriodicalId":589,"journal":{"name":"International Journal of Environmental Science and Technology","volume":"22 6","pages":"4281 - 4292"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Environmental Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s13762-024-06085-7","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the CO2 absorption on the functionalized multi-walled carbon nanotubes with 1,8-diaminooctane (aMWCNT) in pure water solution and N-methyl diethanolamine (MDEA). Hexadecyltrimethylammonium bromide (CTAB) was used as a surfactant to disperse the nanofluid solution. The results showed that at a concentration of 0.005 wt% aMWCNT in water at 16 bar, the CO2 absorption capacity increased by 17.5% compared to pure water. It was found that adding aMWCNT to 15wt% MDEA solution improves the absorption rate. However, the highest absorption was at 0.005wt% aMWCNT in the solvent. The absorption capacity increased to 59% at the highest pressure in 15%wt MDEA solution, including aMWCNT, compared to 15%wt MDEA solution. It can be concluded that adding aMWCNT has advantages such as increasing the absorption capacity and reducing the heat of absorption.
期刊介绍:
International Journal of Environmental Science and Technology (IJEST) is an international scholarly refereed research journal which aims to promote the theory and practice of environmental science and technology, innovation, engineering and management.
A broad outline of the journal''s scope includes: peer reviewed original research articles, case and technical reports, reviews and analyses papers, short communications and notes to the editor, in interdisciplinary information on the practice and status of research in environmental science and technology, both natural and man made.
The main aspects of research areas include, but are not exclusive to; environmental chemistry and biology, environments pollution control and abatement technology, transport and fate of pollutants in the environment, concentrations and dispersion of wastes in air, water, and soil, point and non-point sources pollution, heavy metals and organic compounds in the environment, atmospheric pollutants and trace gases, solid and hazardous waste management; soil biodegradation and bioremediation of contaminated sites; environmental impact assessment, industrial ecology, ecological and human risk assessment; improved energy management and auditing efficiency and environmental standards and criteria.