Development of a Theoretical Model for Predicting Performance of a Gas Ejector in Different Boundary Conditions and Working Fluids

IF 0.9 Q4 ENERGY & FUELS Thermal Engineering Pub Date : 2025-02-21 DOI:10.1134/S0040601524700526
Saeed Akbarnejad,  Masoud Ziabasharhagh
{"title":"Development of a Theoretical Model for Predicting Performance of a Gas Ejector in Different Boundary Conditions and Working Fluids","authors":"Saeed Akbarnejad,&nbsp; Masoud Ziabasharhagh","doi":"10.1134/S0040601524700526","DOIUrl":null,"url":null,"abstract":"<p>Ejectors are devices designed to suck fluid, steam or gas (primary fluid) from a closed space using a powerful jet of steam (secondary fluid), usually operated under specified boundary conditions using specific working fluids. If ejectors are to be used under new boundary conditions, predicting their performance requires either numerical or experimental studies. This paper presents a simple theoretical model capable of accurately predicting the performance of an ejector, given its geometry and boundary conditions, under different operating conditions. The model can predict the entrainment ratio, critical back pressure, and break-up back pressure using a given simple performance curve. The accuracy of the model is validated using computational fluid dynamics (CFD) simulations. Two ejectors with different geometries, dimensions, and boundary conditions are studied using ANSYS Fluent 19.2, and the results are compared with those from two other studies. The model successfully predicts the performance of all four ejectors across a wide range of operating conditions. Finally, the model is extended to any working fluid and temperature and validated numerically using air as the working fluid instead of water vapor. The results show that the model has an entrainment ratio error of less than 2%. It’s worth noting that this model’s applicability is contingent upon simultaneous changes to both the primary and suction streams by the same factor. Under these conditions, the model aligns closely with CFD-simulations.</p>","PeriodicalId":799,"journal":{"name":"Thermal Engineering","volume":"72 1","pages":"8 - 16"},"PeriodicalIF":0.9000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S0040601524700526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Ejectors are devices designed to suck fluid, steam or gas (primary fluid) from a closed space using a powerful jet of steam (secondary fluid), usually operated under specified boundary conditions using specific working fluids. If ejectors are to be used under new boundary conditions, predicting their performance requires either numerical or experimental studies. This paper presents a simple theoretical model capable of accurately predicting the performance of an ejector, given its geometry and boundary conditions, under different operating conditions. The model can predict the entrainment ratio, critical back pressure, and break-up back pressure using a given simple performance curve. The accuracy of the model is validated using computational fluid dynamics (CFD) simulations. Two ejectors with different geometries, dimensions, and boundary conditions are studied using ANSYS Fluent 19.2, and the results are compared with those from two other studies. The model successfully predicts the performance of all four ejectors across a wide range of operating conditions. Finally, the model is extended to any working fluid and temperature and validated numerically using air as the working fluid instead of water vapor. The results show that the model has an entrainment ratio error of less than 2%. It’s worth noting that this model’s applicability is contingent upon simultaneous changes to both the primary and suction streams by the same factor. Under these conditions, the model aligns closely with CFD-simulations.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.30
自引率
20.00%
发文量
94
期刊最新文献
Ammonia as a Fuel for Gas-Turbine Units with Thermochemical Recuperation of Exhaust Gas Heat Development of a Theoretical Model for Predicting Performance of a Gas Ejector in Different Boundary Conditions and Working Fluids Performance Improvement of Power Plant at Aberrant Steam Temperature Condition through E3 Analysis Advanced Exergy Analysis and Performance Ranking of Components of a Combined Cycle Power Plant Assessing the Economic Efficiency of Using Wind Turbines Jointly with Boiler Houses for Heat Supply in Remote and Isolated Regions of the Westernmost Part of Russia’s Arctic Zone
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1