Learning discriminative features for multi-hop knowledge graph reasoning

IF 3.4 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Applied Intelligence Pub Date : 2025-02-22 DOI:10.1007/s10489-025-06327-2
Hao Liu, Dong Li, Bing Zeng, Yang Xu
{"title":"Learning discriminative features for multi-hop knowledge graph reasoning","authors":"Hao Liu,&nbsp;Dong Li,&nbsp;Bing Zeng,&nbsp;Yang Xu","doi":"10.1007/s10489-025-06327-2","DOIUrl":null,"url":null,"abstract":"<div><p>Reinforcement learning (RL)-based multi-hop knowledge graph reasoning has achieved remarkable success in real-world applications and can effectively handle knowledge graph completion tasks. This approach involves a policy-based agent navigating the graph environment to extend reasoning paths and identify the target entity. However, most existing multi-hop reasoning models are typically constrained to stepwise inference, which inherently disrupts the global information of multi-hop paths. To overcome this limitation, we introduce discriminative features between valid and invalid paths as global information. Here, we propose a multi-hop path encoder specifically designed to extract these discriminative features. Firstly, a multi-hop path encoding module is employed to derive each path’s hidden features, using cross-attention mechanisms to strengthen the interaction between triple context and path features. Secondly, a discriminative feature extraction module is used to capture the differences between valid and invalid paths. Thirdly, an attention-enhanced gated fusion mechanism is implemented to integrate these discriminative features into the multi-hop inference decoder. We further evaluate our method on five standard datasets. Our method outperforms the baseline models, demonstrating the effectiveness of discriminative features in improving prediction performance, learning speed, and path interpretability.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 6","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-025-06327-2","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Reinforcement learning (RL)-based multi-hop knowledge graph reasoning has achieved remarkable success in real-world applications and can effectively handle knowledge graph completion tasks. This approach involves a policy-based agent navigating the graph environment to extend reasoning paths and identify the target entity. However, most existing multi-hop reasoning models are typically constrained to stepwise inference, which inherently disrupts the global information of multi-hop paths. To overcome this limitation, we introduce discriminative features between valid and invalid paths as global information. Here, we propose a multi-hop path encoder specifically designed to extract these discriminative features. Firstly, a multi-hop path encoding module is employed to derive each path’s hidden features, using cross-attention mechanisms to strengthen the interaction between triple context and path features. Secondly, a discriminative feature extraction module is used to capture the differences between valid and invalid paths. Thirdly, an attention-enhanced gated fusion mechanism is implemented to integrate these discriminative features into the multi-hop inference decoder. We further evaluate our method on five standard datasets. Our method outperforms the baseline models, demonstrating the effectiveness of discriminative features in improving prediction performance, learning speed, and path interpretability.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Intelligence
Applied Intelligence 工程技术-计算机:人工智能
CiteScore
6.60
自引率
20.80%
发文量
1361
审稿时长
5.9 months
期刊介绍: With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance. The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.
期刊最新文献
Self-supervised heterogeneous graph neural network based on deep and broad neighborhood encoding Learning discriminative features for multi-hop knowledge graph reasoning NNBSVR: Neural Network-Based Semantic Vector Representations of ICD-10 codes Lbgcn: Lightweight bilinear graph convolutional network with attention mechanism for recommendation FinCaKG-Onto: the financial expertise depiction via causality knowledge graph and domain ontology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1