Trapped-ion based nanoscale quantum sensing

IF 13.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Nano Convergence Pub Date : 2025-02-21 DOI:10.1186/s40580-025-00479-0
Jieun Yoo, Hyunsoo Kim, Hyerin Kim, Yeongseo Kim, Taeyoung Choi
{"title":"Trapped-ion based nanoscale quantum sensing","authors":"Jieun Yoo,&nbsp;Hyunsoo Kim,&nbsp;Hyerin Kim,&nbsp;Yeongseo Kim,&nbsp;Taeyoung Choi","doi":"10.1186/s40580-025-00479-0","DOIUrl":null,"url":null,"abstract":"<div><p>Recent development of controlling quantum systems has enabled us to utilize the systems for quantum computing, communication, and sensing. In particular, quantum sensing has attracted attention to a broad community of science and technology, as it could surpass classical limitations in measuring physical quantities such as electric and magnetic field with unprecedented precision. Among various physical platforms for quantum sensing, trapped-ion based system possesses several advantages—atomic size, outstanding quantum coherence, and quantum properties. In this review, we introduce previous research efforts to utilize the trapped-ion system for reaching ultimate sensitivity and discuss future perspective and research directions in this emerging field.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"12 1","pages":""},"PeriodicalIF":13.4000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-025-00479-0","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Convergence","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s40580-025-00479-0","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Recent development of controlling quantum systems has enabled us to utilize the systems for quantum computing, communication, and sensing. In particular, quantum sensing has attracted attention to a broad community of science and technology, as it could surpass classical limitations in measuring physical quantities such as electric and magnetic field with unprecedented precision. Among various physical platforms for quantum sensing, trapped-ion based system possesses several advantages—atomic size, outstanding quantum coherence, and quantum properties. In this review, we introduce previous research efforts to utilize the trapped-ion system for reaching ultimate sensitivity and discuss future perspective and research directions in this emerging field.

Graphical Abstract

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Convergence
Nano Convergence Engineering-General Engineering
CiteScore
15.90
自引率
2.60%
发文量
50
审稿时长
13 weeks
期刊介绍: Nano Convergence is an internationally recognized, peer-reviewed, and interdisciplinary journal designed to foster effective communication among scientists spanning diverse research areas closely aligned with nanoscience and nanotechnology. Dedicated to encouraging the convergence of technologies across the nano- to microscopic scale, the journal aims to unveil novel scientific domains and cultivate fresh research prospects. Operating on a single-blind peer-review system, Nano Convergence ensures transparency in the review process, with reviewers cognizant of authors' names and affiliations while maintaining anonymity in the feedback provided to authors.
期刊最新文献
Effect of La and Si additives in Zr-doped HfO2 capacitors for pseudo-linear high-κ dielectric applications Electronic threshold switching of As-embedded SiO2 selectors: charged oxygen vacancy model Correction: Persistent ferromagnetic ground state in pristine and Ni-doped Fe3GaTe2 flakes Trapped-ion based nanoscale quantum sensing Recent advances in CMOS-compatible synthesis and integration of 2D materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1