Environmental Consequences of Using Ammonia-Ethanolamine Water Chemistry in the Secondary Circuit of VVER-1200 Nuclear Power Plants

IF 0.9 Q4 ENERGY & FUELS Thermal Engineering Pub Date : 2025-02-21 DOI:10.1134/S004060152470054X
V. G. Kritsky, A. V. Gavrilov, N. A. Prokhorov, E. A. Motkova, N. A. Pelageecheva, M. S. Shvaleva, A. V. Karpov
{"title":"Environmental Consequences of Using Ammonia-Ethanolamine Water Chemistry in the Secondary Circuit of VVER-1200 Nuclear Power Plants","authors":"V. G. Kritsky,&nbsp;A. V. Gavrilov,&nbsp;N. A. Prokhorov,&nbsp;E. A. Motkova,&nbsp;N. A. Pelageecheva,&nbsp;M. S. Shvaleva,&nbsp;A. V. Karpov","doi":"10.1134/S004060152470054X","DOIUrl":null,"url":null,"abstract":"<p>The ammonia-ethanolamine water chemistry used at NPPs with VVER-1200 ensures low rates of corrosion, mass transfer, and growth of corrosion product deposits. The content of corrosion products in the feedwater of the steam generator is less than 1 μg/dm<sup>3</sup>. This significantly increases the period between flushing the steam generator to remove deposits. However, ethanolamine and ammonia are absorbed by the cation exchange resin in the ion-exchange filters of the secondary circuit purification systems, which leads to the need to regenerate the cation exchange resin and continuously dose reagents to maintain the required pH value in the feedwater. Waste solutions from regeneration containing ethanolamine and large amounts of ammonia must be treated to ensure that the concentrations of these substances do not exceed maximum permissible values when discharged into the environment. To remove ethanolamine and ammonia from regeneration solutions, special installations are created, the operation of which is based on various principles. A pilot plant for cleaning regeneration solutions was manufactured and installed at the Belarusian NPP with VVER-1200. An analysis of the pilot plant’s operation showed that it successfully fulfills its function of protecting the aquatic environment but, at the same time, it is forced to release a significant amount of ammonia into the surrounding air. Removing ammonia is energy-consuming, environmentally unsafe, and requires the additional use of chemical reagents. In this regard, the water-chemical regime of the secondary circuit without ammonia is very promising. Possible options could be either switching from ammonia to dimethylamine or using ethanolamine as the only corrective reagent with the replacement of some of the structural materials of the secondary circuit with steels with a high chromium content, which have higher corrosion resistance compared to those currently used. Both options will simplify the wastewater treatment technology and reduce the environmental impact while maintaining the low corrosion rates achieved by using the ammonia–ethanolamine water chemistry.</p>","PeriodicalId":799,"journal":{"name":"Thermal Engineering","volume":"72 1","pages":"78 - 84"},"PeriodicalIF":0.9000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S004060152470054X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The ammonia-ethanolamine water chemistry used at NPPs with VVER-1200 ensures low rates of corrosion, mass transfer, and growth of corrosion product deposits. The content of corrosion products in the feedwater of the steam generator is less than 1 μg/dm3. This significantly increases the period between flushing the steam generator to remove deposits. However, ethanolamine and ammonia are absorbed by the cation exchange resin in the ion-exchange filters of the secondary circuit purification systems, which leads to the need to regenerate the cation exchange resin and continuously dose reagents to maintain the required pH value in the feedwater. Waste solutions from regeneration containing ethanolamine and large amounts of ammonia must be treated to ensure that the concentrations of these substances do not exceed maximum permissible values when discharged into the environment. To remove ethanolamine and ammonia from regeneration solutions, special installations are created, the operation of which is based on various principles. A pilot plant for cleaning regeneration solutions was manufactured and installed at the Belarusian NPP with VVER-1200. An analysis of the pilot plant’s operation showed that it successfully fulfills its function of protecting the aquatic environment but, at the same time, it is forced to release a significant amount of ammonia into the surrounding air. Removing ammonia is energy-consuming, environmentally unsafe, and requires the additional use of chemical reagents. In this regard, the water-chemical regime of the secondary circuit without ammonia is very promising. Possible options could be either switching from ammonia to dimethylamine or using ethanolamine as the only corrective reagent with the replacement of some of the structural materials of the secondary circuit with steels with a high chromium content, which have higher corrosion resistance compared to those currently used. Both options will simplify the wastewater treatment technology and reduce the environmental impact while maintaining the low corrosion rates achieved by using the ammonia–ethanolamine water chemistry.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.30
自引率
20.00%
发文量
94
期刊最新文献
Ammonia as a Fuel for Gas-Turbine Units with Thermochemical Recuperation of Exhaust Gas Heat Development of a Theoretical Model for Predicting Performance of a Gas Ejector in Different Boundary Conditions and Working Fluids Performance Improvement of Power Plant at Aberrant Steam Temperature Condition through E3 Analysis Advanced Exergy Analysis and Performance Ranking of Components of a Combined Cycle Power Plant Assessing the Economic Efficiency of Using Wind Turbines Jointly with Boiler Houses for Heat Supply in Remote and Isolated Regions of the Westernmost Part of Russia’s Arctic Zone
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1