Modeling of Axial Compression of Aluminum Matrix Composite V95/10% SiC under Nonstationary Thermomechanical Conditions

IF 0.6 4区 材料科学 Q4 METALLURGY & METALLURGICAL ENGINEERING Russian Journal of Non-Ferrous Metals Pub Date : 2025-02-22 DOI:10.1134/S1067821224700020
D. I. Kryuchkov, A. V. Nesterenko, A. G. Zalazinsky
{"title":"Modeling of Axial Compression of Aluminum Matrix Composite V95/10% SiC under Nonstationary Thermomechanical Conditions","authors":"D. I. Kryuchkov,&nbsp;A. V. Nesterenko,&nbsp;A. G. Zalazinsky","doi":"10.1134/S1067821224700020","DOIUrl":null,"url":null,"abstract":"<p>To obtain products made of aluminum-matrix composite materials (AMCM) with the required level of mechanical properties, processing by means of intense deformation is necessary. To model the deformation behavior in nonstationary conditions of thermal deformation treatment, the identification of the AMCM model remains an urgent task. One of the approaches to the description of material fluidity is the use of the Johnson–Cook plasticity model. In the proposed work, the object of research is an AMCM made of granulated high-strength aluminum alloy V95 of the Al–Zn–Mg–Cu system, reinforced with 10 wt % SiC particles. The aim of the work is to determine the influence of nonstationary thermomechanical (pressure on the workpiece and heating temperature) deformation conditions on the true deformation and deformation rate of the composite material, as well as to identify the material model and verify its application to study the processes of shape change in the studied pressure and temperature range. An experimental study of the precipitation process under uniaxial compression of sintered cylindrical samples of AMCM in the range of initial pressures of 5.65–7.81 MPa when heated to 510, 530, and 550°C is conducted. In this range, the dependences of the degree of deformation and the average deformation rate for the process are obtained. Identification of the rheological model of the material was carried out. A mode of preliminary thermomechanical processing is proposed and a prototype is manufactured at an initial pressure of 6.7 MPa on the workpiece and heated to 550°C in 84 min. The above mode provided relatively uniform filling of the stamp cavities with composite material. To confirm the possibility of applying the results of parametric identification of the material model, simulation modeling of the technological process of manufacturing a prototype was carried out.</p>","PeriodicalId":765,"journal":{"name":"Russian Journal of Non-Ferrous Metals","volume":"65 1","pages":"52 - 58"},"PeriodicalIF":0.6000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Non-Ferrous Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1067821224700020","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

To obtain products made of aluminum-matrix composite materials (AMCM) with the required level of mechanical properties, processing by means of intense deformation is necessary. To model the deformation behavior in nonstationary conditions of thermal deformation treatment, the identification of the AMCM model remains an urgent task. One of the approaches to the description of material fluidity is the use of the Johnson–Cook plasticity model. In the proposed work, the object of research is an AMCM made of granulated high-strength aluminum alloy V95 of the Al–Zn–Mg–Cu system, reinforced with 10 wt % SiC particles. The aim of the work is to determine the influence of nonstationary thermomechanical (pressure on the workpiece and heating temperature) deformation conditions on the true deformation and deformation rate of the composite material, as well as to identify the material model and verify its application to study the processes of shape change in the studied pressure and temperature range. An experimental study of the precipitation process under uniaxial compression of sintered cylindrical samples of AMCM in the range of initial pressures of 5.65–7.81 MPa when heated to 510, 530, and 550°C is conducted. In this range, the dependences of the degree of deformation and the average deformation rate for the process are obtained. Identification of the rheological model of the material was carried out. A mode of preliminary thermomechanical processing is proposed and a prototype is manufactured at an initial pressure of 6.7 MPa on the workpiece and heated to 550°C in 84 min. The above mode provided relatively uniform filling of the stamp cavities with composite material. To confirm the possibility of applying the results of parametric identification of the material model, simulation modeling of the technological process of manufacturing a prototype was carried out.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Russian Journal of Non-Ferrous Metals
Russian Journal of Non-Ferrous Metals METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
1.90
自引率
12.50%
发文量
59
审稿时长
3 months
期刊介绍: Russian Journal of Non-Ferrous Metals is a journal the main goal of which is to achieve new knowledge in the following topics: extraction metallurgy, hydro- and pirometallurgy, casting, plastic deformation, metallography and heat treatment, powder metallurgy and composites, self-propagating high-temperature synthesis, surface engineering and advanced protected coatings, environments, and energy capacity in non-ferrous metallurgy.
期刊最新文献
Processing and Microstructure Characterization of Bio-Waste Induced Closed-Cell Aluminium/SiCp Composite Foams Flow Behavior and Microstructure Characterization of an Ultrahigh-Alloyed Al–Zn–Mg–Cu Alloy Relationship between Anisotropy of Corrosion Properties of Extruded Alloys AZ31 and ZK60 with Crystallographic Texture and Volume Distribution of Second Phase Particles Research into the Percolation Leaching of Copper and Silver from Stale Tailings Modeling of Axial Compression of Aluminum Matrix Composite V95/10% SiC under Nonstationary Thermomechanical Conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1