The aryl hydrocarbon receptor affects the inflammatory response of bone marrow mesenchymal stem cell via the hippo–YAP pathway to exacerbate systemic lupus erythematosus

IF 4.4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY The FASEB Journal Pub Date : 2025-02-22 DOI:10.1096/fj.202402784R
Xingzhi Yang, Mingjun Si, Ting Liu, Jingyu Yang, Lili Jiang, Ximeng Sun, Haitao Yu
{"title":"The aryl hydrocarbon receptor affects the inflammatory response of bone marrow mesenchymal stem cell via the hippo–YAP pathway to exacerbate systemic lupus erythematosus","authors":"Xingzhi Yang,&nbsp;Mingjun Si,&nbsp;Ting Liu,&nbsp;Jingyu Yang,&nbsp;Lili Jiang,&nbsp;Ximeng Sun,&nbsp;Haitao Yu","doi":"10.1096/fj.202402784R","DOIUrl":null,"url":null,"abstract":"<p>The impaired immune regulation of bone marrow mesenchymal stem cells (BM-MSCs) disrupts T-cell homeostasis and alters the immunological environment in individuals with systemic lupus erythematosus (SLE). However, the specific molecular mechanisms underlying the defective immune functions of BM-MSCs in patients with SLE remain unclear. Here, we report that BM-MSCs derived from MRL/lpr mice exhibit a diminished proliferative capacity, elevated levels of aryl hydrocarbon receptor (AhR) and increased levels of secreted proinflammatory cytokines, including IL-1β, IL-6, and TNF-α. These BM-MSCs can increase splenocyte proliferation and upregulate the expression of retinoic acid receptor-related orphan receptor gamma t (RORγt) in EL4 cells, which constitute a murine T-cell lymphoblastic leukemia cell line. Furthermore, MRL/lpr mice treated with FICZ (an AhR agonist) displayed splenomegaly and exacerbated renal pathology, alongside increased levels of AhR, and inflammatory cytokines. Notably, BM-MSCs isolated from FICZ-treated mice also facilitated splenocyte proliferation and increased the RORγt level in EL4 cells during coculture. Similar effects were observed when BM-MSCs were exposed to FICZ in vitro, but these effects were reversed by the administration of CH223191 (an AhR antagonist). Additionally, the expression of Yes-associated protein (YAP) was significantly increased in both MRL/lpr mice and FICZ-treated BM-MSCs. Importantly, verteporfin (a Hippo–YAP inhibitor) attenuated the elevated RORγt levels in EL4 cells and the increased splenocyte proliferation. This study advances our understanding of SLE pathogenesis by pinpointing AhR as a pivotal modulator of the inflammatory response of BM-MSCs through the Hippo–YAP pathway in individuals with SLE. This novel insight not only enriches the current knowledge of SLE mechanisms but also highlights new potential therapeutic targets for SLE.</p>","PeriodicalId":50455,"journal":{"name":"The FASEB Journal","volume":"39 4","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FASEB Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1096/fj.202402784R","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The impaired immune regulation of bone marrow mesenchymal stem cells (BM-MSCs) disrupts T-cell homeostasis and alters the immunological environment in individuals with systemic lupus erythematosus (SLE). However, the specific molecular mechanisms underlying the defective immune functions of BM-MSCs in patients with SLE remain unclear. Here, we report that BM-MSCs derived from MRL/lpr mice exhibit a diminished proliferative capacity, elevated levels of aryl hydrocarbon receptor (AhR) and increased levels of secreted proinflammatory cytokines, including IL-1β, IL-6, and TNF-α. These BM-MSCs can increase splenocyte proliferation and upregulate the expression of retinoic acid receptor-related orphan receptor gamma t (RORγt) in EL4 cells, which constitute a murine T-cell lymphoblastic leukemia cell line. Furthermore, MRL/lpr mice treated with FICZ (an AhR agonist) displayed splenomegaly and exacerbated renal pathology, alongside increased levels of AhR, and inflammatory cytokines. Notably, BM-MSCs isolated from FICZ-treated mice also facilitated splenocyte proliferation and increased the RORγt level in EL4 cells during coculture. Similar effects were observed when BM-MSCs were exposed to FICZ in vitro, but these effects were reversed by the administration of CH223191 (an AhR antagonist). Additionally, the expression of Yes-associated protein (YAP) was significantly increased in both MRL/lpr mice and FICZ-treated BM-MSCs. Importantly, verteporfin (a Hippo–YAP inhibitor) attenuated the elevated RORγt levels in EL4 cells and the increased splenocyte proliferation. This study advances our understanding of SLE pathogenesis by pinpointing AhR as a pivotal modulator of the inflammatory response of BM-MSCs through the Hippo–YAP pathway in individuals with SLE. This novel insight not only enriches the current knowledge of SLE mechanisms but also highlights new potential therapeutic targets for SLE.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
The FASEB Journal
The FASEB Journal 生物-生化与分子生物学
CiteScore
9.20
自引率
2.10%
发文量
6243
审稿时长
3 months
期刊介绍: The FASEB Journal publishes international, transdisciplinary research covering all fields of biology at every level of organization: atomic, molecular, cell, tissue, organ, organismic and population. While the journal strives to include research that cuts across the biological sciences, it also considers submissions that lie within one field, but may have implications for other fields as well. The journal seeks to publish basic and translational research, but also welcomes reports of pre-clinical and early clinical research. In addition to research, review, and hypothesis submissions, The FASEB Journal also seeks perspectives, commentaries, book reviews, and similar content related to the life sciences in its Up Front section.
期刊最新文献
Dolutegravir induces endoplasmic reticulum stress at the blood–brain barrier Fructose induces inflammatory activation in macrophages and microglia through the nutrient-sensing ghrelin receptor The aryl hydrocarbon receptor affects the inflammatory response of bone marrow mesenchymal stem cell via the hippo–YAP pathway to exacerbate systemic lupus erythematosus Postbiotic potential of Lactococcus lactis CNCM I-5388 in alleviating visceral pain in female rat through GABA production: The innovative concept of the “active-GAD bag” Notch signaling pathway in osteogenesis, bone development, metabolism, and diseases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1