Designing and preparing bio-based epoxy monomers to substitute hazardous and nonrenewable bisphenol A (BPA)-type epoxide are important for the development of new epoxy resins under the concept of healthy and sustainable concept. In this work, a “green” bifunctionality epoxy monomer derived from eugenol (EGE-EP) was fabricated by epoxidation functionalization of unsaturated double bond as well as using epichlorohydrin to epoxidize phenolic hydroxyl group. The effects of different hardeners on the properties of EGE-EP were analyzed, and the E51 epoxy cured with the same hardeners was employed as a reference. The results indicate that the EGE-EP/hardeners present desired curing behavior, mechanical performances, and thermal stability which are comparable to the commercial E51/hardeners epoxy resin. Most importantly, all EP/hardeners samples exhibit a lower onset temperature compared to E51/hardeners systems reflecting a faster curing properties of the EGE-EP/hardeners mixtures. Meanwhile, an obvious improvement of char yield is found in EGE-EP/hardeners in contrast to E51/hardeners thus possessing potential for flame retardancy applications. This study proposes an innovative path to prepare bio-based epoxy monomers as an alternative to BPA-type epoxide, which is of significance for eco-friendly epoxy resins and high-value utilization of biomass.