Iron ore substitution and carbon emission reduction by scrap steel recycling under carbon neutrality goal

IF 4.9 3区 环境科学与生态学 Q2 ENGINEERING, ENVIRONMENTAL Journal of Industrial Ecology Pub Date : 2024-12-29 DOI:10.1111/jiec.13600
Bin Zhang, Yang Lu, Hao Li, Niu Niu, Qingyao Xin, Changqing Xu, Zhaohua Wang
{"title":"Iron ore substitution and carbon emission reduction by scrap steel recycling under carbon neutrality goal","authors":"Bin Zhang,&nbsp;Yang Lu,&nbsp;Hao Li,&nbsp;Niu Niu,&nbsp;Qingyao Xin,&nbsp;Changqing Xu,&nbsp;Zhaohua Wang","doi":"10.1111/jiec.13600","DOIUrl":null,"url":null,"abstract":"<p>As the world's largest steel production country, China annually produces more than 50% of global steel, which relies on around 70% of iron ore imports in the last decade. Promoting scrap steel recycling is essential to reduce the heavy dependence on imported iron ore and simultaneously mitigate CO<sub>2</sub> emissions. This study used the GCAM model (Global Change Analysis Model) and the dynamic MFA model to quantify the amount of scrap steel that would be generated under the carbon neutrality goal (CNG). Furthermore, we provided different scrap steel recycling scenarios to explore the potential of iron ore savings and the reduction of CO<sub>2</sub> emissions during 2020–2060. The results showed that the annual steel production would be reduced to 525.2 Mt in 2060 under CNG, but a total of 470.3 Mt of iron ore would still be required annually. The quantity of scrap steel generated is expected to increase annually, reaching a cumulative total of 16941.37 Mt between 2020 and 2060. With increasing the scrap steel recycling rate, under optimal conditions, savings in iron ore and mitigation of CO<sub>2</sub> emissions could reach 6447.1 and 3132.4 Mt, respectively, cumulatively during the period from 2020 to 2060. Furthermore, iron ore demand could be met domestically by 2050, eliminating the need for imports. By extending the lifetime of construction, the overall reduction in steel production would be 1064.1 Mt from 2020 to 2060. Meanwhile, 1883.1 Mt of iron ore can be saved and 889.6 Mt of CO<sub>2</sub> can be mitigated accumulatively.</p>","PeriodicalId":16050,"journal":{"name":"Journal of Industrial Ecology","volume":"29 1","pages":"217-232"},"PeriodicalIF":4.9000,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Ecology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jiec.13600","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

As the world's largest steel production country, China annually produces more than 50% of global steel, which relies on around 70% of iron ore imports in the last decade. Promoting scrap steel recycling is essential to reduce the heavy dependence on imported iron ore and simultaneously mitigate CO2 emissions. This study used the GCAM model (Global Change Analysis Model) and the dynamic MFA model to quantify the amount of scrap steel that would be generated under the carbon neutrality goal (CNG). Furthermore, we provided different scrap steel recycling scenarios to explore the potential of iron ore savings and the reduction of CO2 emissions during 2020–2060. The results showed that the annual steel production would be reduced to 525.2 Mt in 2060 under CNG, but a total of 470.3 Mt of iron ore would still be required annually. The quantity of scrap steel generated is expected to increase annually, reaching a cumulative total of 16941.37 Mt between 2020 and 2060. With increasing the scrap steel recycling rate, under optimal conditions, savings in iron ore and mitigation of CO2 emissions could reach 6447.1 and 3132.4 Mt, respectively, cumulatively during the period from 2020 to 2060. Furthermore, iron ore demand could be met domestically by 2050, eliminating the need for imports. By extending the lifetime of construction, the overall reduction in steel production would be 1064.1 Mt from 2020 to 2060. Meanwhile, 1883.1 Mt of iron ore can be saved and 889.6 Mt of CO2 can be mitigated accumulatively.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Industrial Ecology
Journal of Industrial Ecology 环境科学-环境科学
CiteScore
11.60
自引率
8.50%
发文量
117
审稿时长
12-24 weeks
期刊介绍: The Journal of Industrial Ecology addresses a series of related topics: material and energy flows studies (''industrial metabolism'') technological change dematerialization and decarbonization life cycle planning, design and assessment design for the environment extended producer responsibility (''product stewardship'') eco-industrial parks (''industrial symbiosis'') product-oriented environmental policy eco-efficiency Journal of Industrial Ecology is open to and encourages submissions that are interdisciplinary in approach. In addition to more formal academic papers, the journal seeks to provide a forum for continuing exchange of information and opinions through contributions from scholars, environmental managers, policymakers, advocates and others involved in environmental science, management and policy.
期刊最新文献
Issue Information, Cover, and Table of Contents JIE 2024 reviewers Reducing material use and their greenhouse gas emissions in Greater Oslo Long-term lifetime trends of large appliances since the introduction in Norwegian households Assessing biodiversity-related disclosure: Drivers, outcomes, and financial impacts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1