Improving Volatile Organic Compound Exposure Assessment Using Biomonitoring by Relating Exposure Biomarker Levels in Blood and Urine.

IF 3.7 3区 医学 Q2 CHEMISTRY, MEDICINAL Chemical Research in Toxicology Pub Date : 2025-02-20 DOI:10.1021/acs.chemrestox.4c00485
David M Chambers, Blake J Roberson, Carmen A Woodruff, Benjamin C Blount, Deepak Bhandari
{"title":"Improving Volatile Organic Compound Exposure Assessment Using Biomonitoring by Relating Exposure Biomarker Levels in Blood and Urine.","authors":"David M Chambers, Blake J Roberson, Carmen A Woodruff, Benjamin C Blount, Deepak Bhandari","doi":"10.1021/acs.chemrestox.4c00485","DOIUrl":null,"url":null,"abstract":"<p><p>Exposure assessment of hazardous volatile organic compounds (VOCs) requires accurate quantification of internal dose when establishing limits or identifying significant differences within and among populations. Even though accurate internal dose can be directly measured in blood, it is not always practical or possible to collect a suitable blood specimen. This work studies the relationship between blood and urine levels for certain smoke biomarkers (e.g., tobacco, marijuana) measured in self-reported cigarette smokers. Urine and blood specimens were collected as matched pairs from individuals at the same time. We used our latest specimen collection and VOC analysis protocols to minimize sample collection, handling, and analysis biases. From these analyses, unmetabolized urine benzene, furan, 2,5-dimethylfuran, isobutyronitrile, and benzonitrile levels were found to trend with blood levels. In addition, we measured urine creatinine levels, which were found to be significantly associated with all blood analyte concentrations (<i>p</i>-value ranging from <0.0063 to <0.0001) except for isobutyronitrile (<i>p</i> = 0.3347). For the analytes that were associated with urine creatinine levels, the ratios of urine-to-blood concentrations were substantially higher than those predicted from the urine/blood partition coefficients (<i>K</i><sub>urine/blood</sub>), which should occur if VOCs can freely equilibrate (i.e., passive diffusion) between the blood and urine. The urine isobutyronitrile concentration, which was the only analyte that was not associated with the urine creatinine level, had a urine-to-blood ratio similar to <i>K</i><sub>urine/blood</sub>. These results suggest either that urine VOC levels for certain VOCs do not equilibrate with blood levels in the urinary tract or that there is a conversion of conjugated to free forms, increasing urine VOC levels. Nevertheless, these deviations from partition theory (e.g., Henry's Law) are analyte-specific and require characterization to establish a relationship between blood and urine levels.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Research in Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.chemrestox.4c00485","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Exposure assessment of hazardous volatile organic compounds (VOCs) requires accurate quantification of internal dose when establishing limits or identifying significant differences within and among populations. Even though accurate internal dose can be directly measured in blood, it is not always practical or possible to collect a suitable blood specimen. This work studies the relationship between blood and urine levels for certain smoke biomarkers (e.g., tobacco, marijuana) measured in self-reported cigarette smokers. Urine and blood specimens were collected as matched pairs from individuals at the same time. We used our latest specimen collection and VOC analysis protocols to minimize sample collection, handling, and analysis biases. From these analyses, unmetabolized urine benzene, furan, 2,5-dimethylfuran, isobutyronitrile, and benzonitrile levels were found to trend with blood levels. In addition, we measured urine creatinine levels, which were found to be significantly associated with all blood analyte concentrations (p-value ranging from <0.0063 to <0.0001) except for isobutyronitrile (p = 0.3347). For the analytes that were associated with urine creatinine levels, the ratios of urine-to-blood concentrations were substantially higher than those predicted from the urine/blood partition coefficients (Kurine/blood), which should occur if VOCs can freely equilibrate (i.e., passive diffusion) between the blood and urine. The urine isobutyronitrile concentration, which was the only analyte that was not associated with the urine creatinine level, had a urine-to-blood ratio similar to Kurine/blood. These results suggest either that urine VOC levels for certain VOCs do not equilibrate with blood levels in the urinary tract or that there is a conversion of conjugated to free forms, increasing urine VOC levels. Nevertheless, these deviations from partition theory (e.g., Henry's Law) are analyte-specific and require characterization to establish a relationship between blood and urine levels.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过关联血液和尿液中的暴露生物标志物水平,利用生物监测改进挥发性有机化合物暴露评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.90
自引率
7.30%
发文量
215
审稿时长
3.5 months
期刊介绍: Chemical Research in Toxicology publishes Articles, Rapid Reports, Chemical Profiles, Reviews, Perspectives, Letters to the Editor, and ToxWatch on a wide range of topics in Toxicology that inform a chemical and molecular understanding and capacity to predict biological outcomes on the basis of structures and processes. The overarching goal of activities reported in the Journal are to provide knowledge and innovative approaches needed to promote intelligent solutions for human safety and ecosystem preservation. The journal emphasizes insight concerning mechanisms of toxicity over phenomenological observations. It upholds rigorous chemical, physical and mathematical standards for characterization and application of modern techniques.
期刊最新文献
Perfluorobutanesulfonate Induces Hypothalamic-Pituitary-Gonadal Axis Disruption and Gonadal Dysplasia of Lithobates catesbeianus Tadpoles. Exploring Potential Associations between Benzo[a]pyrene, Nicotine Exposure, and Lung Cancer: Molecular Insights, Prognostic Biomarkers, and Immune Cell Infiltration. Improving Volatile Organic Compound Exposure Assessment Using Biomonitoring by Relating Exposure Biomarker Levels in Blood and Urine. Consensus Modeling for Predicting Chemical Binding to Transthyretin as the Winning Solution of the Tox24 Challenge. Vitamin E Acetate Causes Softening of Pulmonary Surfactant Membrane Models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1