Quinoa bran polyphenol extract attenuates high-fat diet induced non-alcoholic fatty liver disease in mice.

IF 5.1 1区 农林科学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Food & Function Pub Date : 2025-02-21 DOI:10.1039/d4fo02647k
Minjun Sun, Haoyuan Ma, Ying Miao, Meili Zhang
{"title":"Quinoa bran polyphenol extract attenuates high-fat diet induced non-alcoholic fatty liver disease in mice.","authors":"Minjun Sun, Haoyuan Ma, Ying Miao, Meili Zhang","doi":"10.1039/d4fo02647k","DOIUrl":null,"url":null,"abstract":"<p><p>Quinoa bran is a by-product of quinoa processing and is rich in polyphenolic bioactives. Previous studies have shown that polyphenol compounds can help alleviate metabolic diseases, but studies on quinoa bran polyphenols intervening in non-alcoholic fatty liver disease (NAFLD) have not yet been reported. In this study, a C57BL/6J mouse NAFLD model was established using a high-fat diet (HFD) to explore the interventional effects of quinoa bran polyphenol extract (QBP) on NAFLD in mice. The results showed that QBP was effective in attenuating abnormal lipid metabolism and hepatic fat accumulation and reducing inflammation in NAFLD mice. 16S rRNA sequencing analysis showed that QBP regulated the composition of the gut microbiota by increasing the abundance of beneficial bacteria <i>Clostridium_innocuum_group</i>, <i>Clostridium_sensu_stricto_13</i>, <i>Ruminococcus_gnavus_group</i>, <i>Coriobacteriaceae_UCG_002</i> and <i>UBA1819</i>. Untargeted metabolomics identified 51 differential metabolites due to QBP supplementation. Functional predictions indicated that starch and sucrose metabolism and pentose and gluconate interconversion are key metabolic pathways for QBP to attenuate NAFLD, which may be influenced by the gut microbiota. These results demonstrated the potential application of QBP interventions for NAFLD.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food & Function","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1039/d4fo02647k","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Quinoa bran is a by-product of quinoa processing and is rich in polyphenolic bioactives. Previous studies have shown that polyphenol compounds can help alleviate metabolic diseases, but studies on quinoa bran polyphenols intervening in non-alcoholic fatty liver disease (NAFLD) have not yet been reported. In this study, a C57BL/6J mouse NAFLD model was established using a high-fat diet (HFD) to explore the interventional effects of quinoa bran polyphenol extract (QBP) on NAFLD in mice. The results showed that QBP was effective in attenuating abnormal lipid metabolism and hepatic fat accumulation and reducing inflammation in NAFLD mice. 16S rRNA sequencing analysis showed that QBP regulated the composition of the gut microbiota by increasing the abundance of beneficial bacteria Clostridium_innocuum_group, Clostridium_sensu_stricto_13, Ruminococcus_gnavus_group, Coriobacteriaceae_UCG_002 and UBA1819. Untargeted metabolomics identified 51 differential metabolites due to QBP supplementation. Functional predictions indicated that starch and sucrose metabolism and pentose and gluconate interconversion are key metabolic pathways for QBP to attenuate NAFLD, which may be influenced by the gut microbiota. These results demonstrated the potential application of QBP interventions for NAFLD.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Food & Function
Food & Function BIOCHEMISTRY & MOLECULAR BIOLOGY-FOOD SCIENCE & TECHNOLOGY
CiteScore
10.10
自引率
6.60%
发文量
957
审稿时长
1.8 months
期刊介绍: Food & Function provides a unique venue for physicists, chemists, biochemists, nutritionists and other food scientists to publish work at the interface of the chemistry, physics and biology of food. The journal focuses on food and the functions of food in relation to health.
期刊最新文献
Alleviation of hyperglycaemia and oxidative stress by fruit extracts of different cultivars of the cornelian cherry (Cornus mas L. and Cornus mas × Cornus officinalis) in rats with diabetes mellitus. Effects of fermented wheat germ on the placenta of high-fat diet-induced obese maternal rats: morphology, metabolism, and nutrient transport. Quinoa bran polyphenol extract attenuates high-fat diet induced non-alcoholic fatty liver disease in mice. Development of 3D-printed foods incorporating riboflavin-loaded whey protein isolate nanostructures: characterization and in vitro digestion. Comparative effects of different sugar substitutes: Mogroside V, stevioside, sucralose, and erythritol on intestinal health in a type 2 diabetes mellitus mouse.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1