Genetic characterization and in silico serotyping of 62 Salmonella enterica isolated from Korean poultry operations.

IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY BMC Genomics Pub Date : 2025-02-20 DOI:10.1186/s12864-025-11358-7
Hyunhee Hong, Miseon Kang, Avery Haymowicz, Hoang Ngoc Minh Le, Eiseul Kim, Seung Min Yang, Sang-Do Ha, Hyun Jung Kim, Si Hong Park
{"title":"Genetic characterization and in silico serotyping of 62 Salmonella enterica isolated from Korean poultry operations.","authors":"Hyunhee Hong, Miseon Kang, Avery Haymowicz, Hoang Ngoc Minh Le, Eiseul Kim, Seung Min Yang, Sang-Do Ha, Hyun Jung Kim, Si Hong Park","doi":"10.1186/s12864-025-11358-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The conventional method of antigen-based serotyping for Salmonella poses challenges due to the necessity of utilizing over 150 antisera. More recently, in silico Salmonella serotyping has emerged as a predictive alternative. The purpose of this study was to predict the serovars of 62 Salmonella enterica strains isolated from Korean poultry operations and their genetic characteristics using whole genome sequencing. The analysis employed diverse methods, including ribosomal, and core genome multi-locus sequence typing (MLST), based on Salmonella In Silico Typing Resource (SISTR). Pangenome, clusters of orthologous groups (COG) analysis, and identification of virulence and antibiotic resistance genes were conducted.</p><p><strong>Results: </strong>Salmonella enterica subspecies enterica serovars were observed and clustered based on the pangenome and phylogenetic tree: 21 Salmonella Albany (Albany), 13 Salmonella Bareilly (Bareilly), and 28 Salmonella Mbandaka (Mbandaka). The most frequently observed sequence types for the three serovars were ST292 in Albany, ST203 in Bareilly, and ST413 in Mbandaka. 18 antibiotic resistance genes showed varying presences based on the serovars, including Albany (qacEdelta1, tet(D), CARB-3 (blaCARB-3), and dfrA1) and Bareilly (aac(6')-ly). Intriguingly, a mutated gyrA (Ser83 → Phe, serine to phenylalanine) was observed in all 21 Albany strains, whereas Bareilly and Mbandaka carried the wild-type gyrA. Among 130 virulence genes analyzed, 107 were present in all 62 Salmonella strains, with Mbandaka strains exhibiting a higher prevalence of virulence genes related to fimbrial adherence compared to those of Albany and Bareilly.</p><p><strong>Conclusions: </strong>The study identified distinct genetic characteristics among the three Salmonella serovars using whole genome sequencing. Albany carried a unique mutation in gyrA, occurring in the quinolone resistance-determining region. Additionally, the virulence gene profile of Mbandaka differed from the other serovars, particularly in fimbrial adherence genes. These findings demonstrate the effectiveness of in silico approaches in predicting Salmonella serovars and highlight genetic differences that may inform strategies for antibiotic resistance and virulence control, such as developing rapid diagnostic tools to detect the AMR (e.g. tet (D), and gyrA) or targeting serovar-specific virulence factors like fimbrial adherence genes in Mbandaka to mitigate pathogenicity.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"26 1","pages":"166"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12864-025-11358-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The conventional method of antigen-based serotyping for Salmonella poses challenges due to the necessity of utilizing over 150 antisera. More recently, in silico Salmonella serotyping has emerged as a predictive alternative. The purpose of this study was to predict the serovars of 62 Salmonella enterica strains isolated from Korean poultry operations and their genetic characteristics using whole genome sequencing. The analysis employed diverse methods, including ribosomal, and core genome multi-locus sequence typing (MLST), based on Salmonella In Silico Typing Resource (SISTR). Pangenome, clusters of orthologous groups (COG) analysis, and identification of virulence and antibiotic resistance genes were conducted.

Results: Salmonella enterica subspecies enterica serovars were observed and clustered based on the pangenome and phylogenetic tree: 21 Salmonella Albany (Albany), 13 Salmonella Bareilly (Bareilly), and 28 Salmonella Mbandaka (Mbandaka). The most frequently observed sequence types for the three serovars were ST292 in Albany, ST203 in Bareilly, and ST413 in Mbandaka. 18 antibiotic resistance genes showed varying presences based on the serovars, including Albany (qacEdelta1, tet(D), CARB-3 (blaCARB-3), and dfrA1) and Bareilly (aac(6')-ly). Intriguingly, a mutated gyrA (Ser83 → Phe, serine to phenylalanine) was observed in all 21 Albany strains, whereas Bareilly and Mbandaka carried the wild-type gyrA. Among 130 virulence genes analyzed, 107 were present in all 62 Salmonella strains, with Mbandaka strains exhibiting a higher prevalence of virulence genes related to fimbrial adherence compared to those of Albany and Bareilly.

Conclusions: The study identified distinct genetic characteristics among the three Salmonella serovars using whole genome sequencing. Albany carried a unique mutation in gyrA, occurring in the quinolone resistance-determining region. Additionally, the virulence gene profile of Mbandaka differed from the other serovars, particularly in fimbrial adherence genes. These findings demonstrate the effectiveness of in silico approaches in predicting Salmonella serovars and highlight genetic differences that may inform strategies for antibiotic resistance and virulence control, such as developing rapid diagnostic tools to detect the AMR (e.g. tet (D), and gyrA) or targeting serovar-specific virulence factors like fimbrial adherence genes in Mbandaka to mitigate pathogenicity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Genomics
BMC Genomics 生物-生物工程与应用微生物
CiteScore
7.40
自引率
4.50%
发文量
769
审稿时长
6.4 months
期刊介绍: BMC Genomics is an open access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics. BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
期刊最新文献
Profiling conserved transcription factor binding motifs in Phaseolus vulgaris through comparative genomics. Genetic characterization and in silico serotyping of 62 Salmonella enterica isolated from Korean poultry operations. Genome-wide identification, characterization and expression analysis of the chalcone synthase gene family in Chinese cabbage. Histone H3 K4 trimethylation occurs mainly at the origins of polycistronic transcription in the genome of Leishmania infantum promastigotes and intracellular amastigotes. Interaction of genetic variants and methylation in transcript-level expression regulation in Alzheimer's disease by multi-omics data analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1