Immune Cell Engagers: Advancing Precision Immunotherapy for Cancer Treatment.

IF 3 Q3 IMMUNOLOGY Antibodies Pub Date : 2025-02-11 DOI:10.3390/antib14010016
Hyukmin In, Minkyoung Park, Hyeonsik Lee, Kyung Ho Han
{"title":"Immune Cell Engagers: Advancing Precision Immunotherapy for Cancer Treatment.","authors":"Hyukmin In, Minkyoung Park, Hyeonsik Lee, Kyung Ho Han","doi":"10.3390/antib14010016","DOIUrl":null,"url":null,"abstract":"<p><p>Immune cell engagers (ICEs) are an emerging class of immunotherapies designed to harness the immune system's anti-tumor potential through precise targeting and activation of immune effector cells. By engaging T cells, natural killer (NK) cells, and phagocytes, ICEs overcome challenges such as immune evasion and MHC downregulation, addressing critical barriers in cancer treatment. T-cell engagers (TCEs), led by bispecific T-cell engagers (BiTEs), dominate the field, with innovations such as half-life-extended BiTEs, trispecific antibodies, and checkpoint inhibitory T-cell engagers driving their application in hematologic and solid malignancies. NK cell engagers (NKCEs) and phagocyte cell engagers (PCEs) are rapidly progressing, drawing on NK cells' innate cytotoxicity and macrophages' phagocytic abilities to target tumors, particularly in immunosuppressive microenvironments. Since the FDA approval of Blinatumomab in 2014, ICEs have transformed the oncology landscape, with nine FDA-approved products and numerous candidates in clinical trials. Despite challenges such as toxicity, resistance, and limited efficacy in solid tumors, ongoing research into advanced platforms and combination therapies highlights the growing potential of ICEs to provide personalized, scalable, and effective cancer treatments. This review investigates the mechanisms, platforms, research trends, and clinical progress of ICEs, emphasizing their pivotal role in advancing precision immunotherapy and their promise as a cornerstone of next-generation cancer therapies.</p>","PeriodicalId":8188,"journal":{"name":"Antibodies","volume":"14 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11843982/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antibodies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/antib14010016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Immune cell engagers (ICEs) are an emerging class of immunotherapies designed to harness the immune system's anti-tumor potential through precise targeting and activation of immune effector cells. By engaging T cells, natural killer (NK) cells, and phagocytes, ICEs overcome challenges such as immune evasion and MHC downregulation, addressing critical barriers in cancer treatment. T-cell engagers (TCEs), led by bispecific T-cell engagers (BiTEs), dominate the field, with innovations such as half-life-extended BiTEs, trispecific antibodies, and checkpoint inhibitory T-cell engagers driving their application in hematologic and solid malignancies. NK cell engagers (NKCEs) and phagocyte cell engagers (PCEs) are rapidly progressing, drawing on NK cells' innate cytotoxicity and macrophages' phagocytic abilities to target tumors, particularly in immunosuppressive microenvironments. Since the FDA approval of Blinatumomab in 2014, ICEs have transformed the oncology landscape, with nine FDA-approved products and numerous candidates in clinical trials. Despite challenges such as toxicity, resistance, and limited efficacy in solid tumors, ongoing research into advanced platforms and combination therapies highlights the growing potential of ICEs to provide personalized, scalable, and effective cancer treatments. This review investigates the mechanisms, platforms, research trends, and clinical progress of ICEs, emphasizing their pivotal role in advancing precision immunotherapy and their promise as a cornerstone of next-generation cancer therapies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Antibodies
Antibodies IMMUNOLOGY-
CiteScore
7.10
自引率
6.40%
发文量
68
审稿时长
11 weeks
期刊介绍: Antibodies (ISSN 2073-4468), an international, peer-reviewed open access journal which provides an advanced forum for studies related to antibodies and antigens. It publishes reviews, research articles, communications and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. Electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material. This journal covers all topics related to antibodies and antigens, topics of interest include (but are not limited to): antibody-producing cells (including B cells), antibody structure and function, antibody-antigen interactions, Fc receptors, antibody manufacturing antibody engineering, antibody therapy, immunoassays, antibody diagnosis, tissue antigens, exogenous antigens, endogenous antigens, autoantigens, monoclonal antibodies, natural antibodies, humoral immune responses, immunoregulatory molecules.
期刊最新文献
Avian Antibodies as Potential Therapeutic Tools. Investigation of Antibody Pharmacokinetics in Male Reproductive System and Its Characterization Using a Translational PBPK Model. Immune Cell Engagers: Advancing Precision Immunotherapy for Cancer Treatment. Assessing the Influence of Selected Permeabilization Methods on Lymphocyte Single-Cell Multi-Omics. Clinical Scaleup of Humanized AnnA1 Antibody Yielded Unexpected High Reticuloendothelial (RES) Uptake in Mice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1