Testing for group differences in multilevel vector autoregressive models.

IF 3.9 2区 心理学 Q1 PSYCHOLOGY, EXPERIMENTAL Behavior Research Methods Pub Date : 2025-02-20 DOI:10.3758/s13428-024-02541-x
Jonas M B Haslbeck, Sacha Epskamp, Lourens J Waldorp
{"title":"Testing for group differences in multilevel vector autoregressive models.","authors":"Jonas M B Haslbeck, Sacha Epskamp, Lourens J Waldorp","doi":"10.3758/s13428-024-02541-x","DOIUrl":null,"url":null,"abstract":"<p><p>Multilevel Vector Autoregressive (VAR) models have become a popular tool for analyzing time series data from multiple subjects. Many studies aim to investigate differences in multilevel VAR models between groups, such as patients and healthy controls. However, there is currently no easily applicable method to make inferences about such group differences. Here, we present two standard tests for making such inferences: a parametric test and a nonparametric permutation test. We explain the rationale for both tests, provide an implementation based on the popular R-package mlVAR, and evaluate their performance in recovering group differences in scenarios resembling empirical research using a simulation study. Finally, we provide a fully reproducible R-tutorial on testing for group differences in a dataset of emotion measures using the new R-package mnet.</p>","PeriodicalId":8717,"journal":{"name":"Behavior Research Methods","volume":"57 3","pages":"100"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavior Research Methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3758/s13428-024-02541-x","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Multilevel Vector Autoregressive (VAR) models have become a popular tool for analyzing time series data from multiple subjects. Many studies aim to investigate differences in multilevel VAR models between groups, such as patients and healthy controls. However, there is currently no easily applicable method to make inferences about such group differences. Here, we present two standard tests for making such inferences: a parametric test and a nonparametric permutation test. We explain the rationale for both tests, provide an implementation based on the popular R-package mlVAR, and evaluate their performance in recovering group differences in scenarios resembling empirical research using a simulation study. Finally, we provide a fully reproducible R-tutorial on testing for group differences in a dataset of emotion measures using the new R-package mnet.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
检验多水平向量自回归模型的组差异。
多层次矢量自回归(VAR)模型已成为分析多个受试者时间序列数据的常用工具。许多研究旨在调查多层次 VAR 模型在不同组别(如患者和健康对照组)之间的差异。然而,目前还没有一种简单适用的方法来推断这种组间差异。在此,我们将介绍两种用于进行此类推断的标准检验方法:参数检验和非参数置换检验。我们解释了这两种检验的原理,提供了基于流行的 R 软件包 mlVAR 的实现方法,并通过模拟研究评估了它们在类似实证研究的情况下恢复群体差异的性能。最后,我们提供了一个完全可重现的 R 教程,利用新的 R 软件包 mnet 测试情感测量数据集中的群体差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.30
自引率
9.30%
发文量
266
期刊介绍: Behavior Research Methods publishes articles concerned with the methods, techniques, and instrumentation of research in experimental psychology. The journal focuses particularly on the use of computer technology in psychological research. An annual special issue is devoted to this field.
期刊最新文献
Virtual agents as a scalable tool for diverse, robust gesture recognition. A mouse-tracking classification task to measure the unhealthy = tasty intuition. Forming bootstrap confidence intervals and examining bootstrap distributions of standardized coefficients in structural equation modelling: A simplified workflow using the R package semboottools. Unconscious cognition without post hoc selection artifacts: From selective analysis to functional dissociations. The Tool for Automatic Analysis of Decoding Ambiguity (TAADA).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1