Mechanistic insights into the transcriptomic and metabolomic responses of Curcuma wenyujin under high phosphorus stress.

IF 4.3 2区 生物学 Q1 PLANT SCIENCES BMC Plant Biology Pub Date : 2025-02-20 DOI:10.1186/s12870-025-06132-6
Yu Liu, Chen Wang, Wenqing Xu, Ruike Fan, Zhigang Wu, Lishang Dai
{"title":"Mechanistic insights into the transcriptomic and metabolomic responses of Curcuma wenyujin under high phosphorus stress.","authors":"Yu Liu, Chen Wang, Wenqing Xu, Ruike Fan, Zhigang Wu, Lishang Dai","doi":"10.1186/s12870-025-06132-6","DOIUrl":null,"url":null,"abstract":"<p><p>Curcuma wenyujin, a perennial herb of the ginger family, is renowned for its significant medicinal properties. Phosphorus (P), a vital nutrient for plant growth and development, has seen its levels, particularly organic P, increase in the soils of agricultural regions in southern China, presenting new challenges for nutrient management. This study aimed to uncover the molecular responses of C. wenyujin seedlings to both normal and high phosphorus (HP) conditions, shedding light on their adaptation strategies to P stress. Through transcriptome and metabolome analyses of the seedlings under normal and HP conditions, we identified 1,793 metabolites, with 195 showing differential expression. Notably, KEGG enrichment analysis highlighted 35 significantly differential accumulation metabolites (DAMs). Comparing the control group (CK) and HP treated groups (T) revealed 840 differentially expressed genes (DEGs), pinpointing the molecular divergences in response to varying P levels. Importantly, we found a potential gene, purple acid phosphatase 17 (pap17) that may cofer HP stress conditions in C. wenyujin. That elucidated the response variations of C. wenyujin seedlings to diverse P concentrations. The research suggested that C. wenyujin may adjust to varying P levels by modulating metabolites and genes linked to amino acid and phenylpropane metabolism. It highlighted the sophisticated mechanisms plants utilize to manage P stress, offering insights into their survival tactics in settings where P availability changes.</p>","PeriodicalId":9198,"journal":{"name":"BMC Plant Biology","volume":"25 1","pages":"233"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12870-025-06132-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Curcuma wenyujin, a perennial herb of the ginger family, is renowned for its significant medicinal properties. Phosphorus (P), a vital nutrient for plant growth and development, has seen its levels, particularly organic P, increase in the soils of agricultural regions in southern China, presenting new challenges for nutrient management. This study aimed to uncover the molecular responses of C. wenyujin seedlings to both normal and high phosphorus (HP) conditions, shedding light on their adaptation strategies to P stress. Through transcriptome and metabolome analyses of the seedlings under normal and HP conditions, we identified 1,793 metabolites, with 195 showing differential expression. Notably, KEGG enrichment analysis highlighted 35 significantly differential accumulation metabolites (DAMs). Comparing the control group (CK) and HP treated groups (T) revealed 840 differentially expressed genes (DEGs), pinpointing the molecular divergences in response to varying P levels. Importantly, we found a potential gene, purple acid phosphatase 17 (pap17) that may cofer HP stress conditions in C. wenyujin. That elucidated the response variations of C. wenyujin seedlings to diverse P concentrations. The research suggested that C. wenyujin may adjust to varying P levels by modulating metabolites and genes linked to amino acid and phenylpropane metabolism. It highlighted the sophisticated mechanisms plants utilize to manage P stress, offering insights into their survival tactics in settings where P availability changes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Plant Biology
BMC Plant Biology 生物-植物科学
CiteScore
8.40
自引率
3.80%
发文量
539
审稿时长
3.8 months
期刊介绍: BMC Plant Biology is an open access, peer-reviewed journal that considers articles on all aspects of plant biology, including molecular, cellular, tissue, organ and whole organism research.
期刊最新文献
Ca2+-dependent H2O2 response in roots and leaves of barley - a transcriptomic investigation. Compensatory growth and ion balance adaptation mechanisms of Salix matsudana Koidz under heterogeneous salinity stress. Genome-wide identification, characterization and expression analysis of tubulin gene family in Populus deltoides. Identification of key genes controlling anthocyanin biosynthesis in the fruits of a bud variety of Tarocco blood-orange. Mechanistic insights into the transcriptomic and metabolomic responses of Curcuma wenyujin under high phosphorus stress.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1