Stage-specific DNA methylation dynamics in mammalian heart development.

IF 3 4区 医学 Q2 GENETICS & HEREDITY Epigenomics Pub Date : 2025-02-21 DOI:10.1080/17501911.2025.2467024
Fangfang Zhang, Todd Evans
{"title":"Stage-specific DNA methylation dynamics in mammalian heart development.","authors":"Fangfang Zhang, Todd Evans","doi":"10.1080/17501911.2025.2467024","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiac development is a precisely regulated process governed by both genetic and epigenetic mechanisms. Among these, DNA methylation is one mode of epigenetic regulation that plays a crucial role in controlling gene expression at various stages of heart development and maturation. Understanding stage-specific DNA methylation dynamics is critical for unraveling the molecular processes underlying heart development from specification of early progenitors, formation of a primitive and growing heart tube from heart fields, heart morphogenesis, organ function, and response to developmental and physiological signals. This review highlights research that has explored profiles of DNA methylation that are highly dynamic during cardiac development and maturation, exploring stage-specific roles and the key molecular players involved. By exploring recent insights into the changing methylation landscape, we aim to highlight the complex interplay between DNA methylation and stage-specific cardiac gene expression, differentiation, and maturation.</p>","PeriodicalId":11959,"journal":{"name":"Epigenomics","volume":" ","pages":"1-13"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17501911.2025.2467024","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Cardiac development is a precisely regulated process governed by both genetic and epigenetic mechanisms. Among these, DNA methylation is one mode of epigenetic regulation that plays a crucial role in controlling gene expression at various stages of heart development and maturation. Understanding stage-specific DNA methylation dynamics is critical for unraveling the molecular processes underlying heart development from specification of early progenitors, formation of a primitive and growing heart tube from heart fields, heart morphogenesis, organ function, and response to developmental and physiological signals. This review highlights research that has explored profiles of DNA methylation that are highly dynamic during cardiac development and maturation, exploring stage-specific roles and the key molecular players involved. By exploring recent insights into the changing methylation landscape, we aim to highlight the complex interplay between DNA methylation and stage-specific cardiac gene expression, differentiation, and maturation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Epigenomics
Epigenomics GENETICS & HEREDITY-
CiteScore
5.80
自引率
2.60%
发文量
95
审稿时长
>12 weeks
期刊介绍: Epigenomics provides the forum to address the rapidly progressing research developments in this ever-expanding field; to report on the major challenges ahead and critical advances that are propelling the science forward. The journal delivers this information in concise, at-a-glance article formats – invaluable to a time constrained community. Substantial developments in our current knowledge and understanding of genomics and epigenetics are constantly being made, yet this field is still in its infancy. Epigenomics provides a critical overview of the latest and most significant advances as they unfold and explores their potential application in the clinical setting.
期刊最新文献
Development and validation of a novel cell type estimation method for targeted bisulfite sequencing data. Edge of RNA m6A modification on LINE-1 retrotransposons in central nervous system: merely a transcriptional control? Identification of a chromatin regulator signature and potential candidate drugs for primary open-angle glaucoma. Insight into the role of DNA methylation in prognosis and treatment response prediction of gastrointestinal cancers. Immigrant status and citizenship relationships with epigenetic aging in a representative sample of United States adults.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1