High-Resolution Untargeted Metabolomics Reveals Alternate-Day Fasting May Attenuate Diabetic Kidney Disease Progression in BTBR ob/ob Mice by Affecting the HCA, IPA and Reducing Inflammation.
Huiqing Yu, Liping Yan, Jiaqing Ma, Xinduo Zhang, Hongman Wu, Yahui Yan, Hong Shen, Zhiguo Li
{"title":"High-Resolution Untargeted Metabolomics Reveals Alternate-Day Fasting May Attenuate Diabetic Kidney Disease Progression in BTBR ob/ob Mice by Affecting the HCA, IPA and Reducing Inflammation.","authors":"Huiqing Yu, Liping Yan, Jiaqing Ma, Xinduo Zhang, Hongman Wu, Yahui Yan, Hong Shen, Zhiguo Li","doi":"10.1007/s10753-025-02263-y","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic kidney disease (DKD) is one of the most severe complications of diabetes mellitus, with limited effective therapeutic interventions. Alternate-day fasting (ADF) shows potential in treating DKD, though its mechanisms are not fully understood. In this study, BTBR ob/ob mice underwent 12 weeks of ADF, and high-resolution untargeted metabolomics were performed to uncover the underlying mechanisms. After 12 weeks of ADF, the BTBR ob/ob mice exhibited weight loss, lower blood glucose and LDL-C levels, reduced 24-h urinary protein excretion, and decreased renal collagen deposition. A total of 44 metabolites were differentially expressed, with 25 up-regulated and 19 down-regulated. Notably, hyocholic acid (HCA) and indole-3-propionic acid (IPA), both products of intestinal bacteria, can modulating inflammation were differentially expressed. Furthermore, the kidneys of BTBR ob/ob mice showed significantly lower NF-κB pathway activity and reduced inflammation after 12 weeks of ADF. This study indicates that ADF may alleviate DKD progression by modulating HCA, IPA, and decreasing inflammation.</p>","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10753-025-02263-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetic kidney disease (DKD) is one of the most severe complications of diabetes mellitus, with limited effective therapeutic interventions. Alternate-day fasting (ADF) shows potential in treating DKD, though its mechanisms are not fully understood. In this study, BTBR ob/ob mice underwent 12 weeks of ADF, and high-resolution untargeted metabolomics were performed to uncover the underlying mechanisms. After 12 weeks of ADF, the BTBR ob/ob mice exhibited weight loss, lower blood glucose and LDL-C levels, reduced 24-h urinary protein excretion, and decreased renal collagen deposition. A total of 44 metabolites were differentially expressed, with 25 up-regulated and 19 down-regulated. Notably, hyocholic acid (HCA) and indole-3-propionic acid (IPA), both products of intestinal bacteria, can modulating inflammation were differentially expressed. Furthermore, the kidneys of BTBR ob/ob mice showed significantly lower NF-κB pathway activity and reduced inflammation after 12 weeks of ADF. This study indicates that ADF may alleviate DKD progression by modulating HCA, IPA, and decreasing inflammation.
期刊介绍:
Inflammation publishes the latest international advances in experimental and clinical research on the physiology, biochemistry, cell biology, and pharmacology of inflammation. Contributions include full-length scientific reports, short definitive articles, and papers from meetings and symposia proceedings. The journal''s coverage includes acute and chronic inflammation; mediators of inflammation; mechanisms of tissue injury and cytotoxicity; pharmacology of inflammation; and clinical studies of inflammation and its modification.