Izaviany Schmitz, Larissa Daniele Bobermin, Amanda da Silva, Fernanda Becker Weber, Natalie K Thomaz, Felipe Schmitz, Morgana Brondani, Roselei Fachinetto, Guilhian Leipnitz, Angela T S Wyse, Carlos-Alberto Gonçalves, André Quincozes-Santos
{"title":"A single dose of haloperidol decanoate induces short-term hippocampal neuroinflammation: focus on the glial response.","authors":"Izaviany Schmitz, Larissa Daniele Bobermin, Amanda da Silva, Fernanda Becker Weber, Natalie K Thomaz, Felipe Schmitz, Morgana Brondani, Roselei Fachinetto, Guilhian Leipnitz, Angela T S Wyse, Carlos-Alberto Gonçalves, André Quincozes-Santos","doi":"10.1007/s43440-025-00706-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Haloperidol is a widely used antipsychotic for the treatment of neuropsychiatric disorders, the pathophysiology of which may involve hippocampal alterations. Hippocampus is affected by long-term use of the drug, but the effects of acute doses on the hippocampus remain unclear. The present study investigated whether a single dose of haloperidol decanoate could induce short-term hippocampal neuroinflammation and changes in cholinergic, glutamatergic and redox homeostasis in adult rats, focusing on the glial response.</p><p><strong>Methods: </strong>Male Wistar rats (60 days old) received a single intramuscular injection of haloperidol decanoate (38 mg/kg) or vehicle. After 7 days, hippocampal tissue was used to assess gene expression of inflammatory mediators, glutamate transporters, and transcriptional factors that regulate neuroinflammation. The enzymatic activities of acetylcholinesterase (AChE), glutamine synthetase (GS), and glutathione peroxidase (GPx), and glutamate uptake and reduced glutathione (GSH) levels were also determined.</p><p><strong>Results: </strong>Haloperidol decanoate increased the gene expression of pro-inflammatory cytokines, cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS). Moreover, downregulation of the transcriptional factor erythroid 2-related factor 2 (Nrf2) and the peroxisome proliferator-activated receptor-gamma coactivator (PGC-1α) was observed. In contrast, nuclear factor κB (NFκB) transcriptional levels remained unchanged. Haloperidol also increased glutamate uptake, the glutamate transporter GLAST gene expression, and the AChE and GPx activities.</p><p><strong>Conclusions: </strong>Our findings show that a single dose of haloperidol decanoate induces short-term hippocampal neuroinflammation and changes in glial parameters, highlighting the need for future adjuvant glioprotective strategies that can attenuate these effects.</p>","PeriodicalId":19947,"journal":{"name":"Pharmacological Reports","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacological Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s43440-025-00706-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Haloperidol is a widely used antipsychotic for the treatment of neuropsychiatric disorders, the pathophysiology of which may involve hippocampal alterations. Hippocampus is affected by long-term use of the drug, but the effects of acute doses on the hippocampus remain unclear. The present study investigated whether a single dose of haloperidol decanoate could induce short-term hippocampal neuroinflammation and changes in cholinergic, glutamatergic and redox homeostasis in adult rats, focusing on the glial response.
Methods: Male Wistar rats (60 days old) received a single intramuscular injection of haloperidol decanoate (38 mg/kg) or vehicle. After 7 days, hippocampal tissue was used to assess gene expression of inflammatory mediators, glutamate transporters, and transcriptional factors that regulate neuroinflammation. The enzymatic activities of acetylcholinesterase (AChE), glutamine synthetase (GS), and glutathione peroxidase (GPx), and glutamate uptake and reduced glutathione (GSH) levels were also determined.
Results: Haloperidol decanoate increased the gene expression of pro-inflammatory cytokines, cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS). Moreover, downregulation of the transcriptional factor erythroid 2-related factor 2 (Nrf2) and the peroxisome proliferator-activated receptor-gamma coactivator (PGC-1α) was observed. In contrast, nuclear factor κB (NFκB) transcriptional levels remained unchanged. Haloperidol also increased glutamate uptake, the glutamate transporter GLAST gene expression, and the AChE and GPx activities.
Conclusions: Our findings show that a single dose of haloperidol decanoate induces short-term hippocampal neuroinflammation and changes in glial parameters, highlighting the need for future adjuvant glioprotective strategies that can attenuate these effects.
期刊介绍:
Pharmacological Reports publishes articles concerning all aspects of pharmacology, dealing with the action of drugs at a cellular and molecular level, and papers on the relationship between molecular structure and biological activity as well as reports on compounds with well-defined chemical structures.
Pharmacological Reports is an open forum to disseminate recent developments in: pharmacology, behavioural brain research, evidence-based complementary biochemical pharmacology, medicinal chemistry and biochemistry, drug discovery, neuro-psychopharmacology and biological psychiatry, neuroscience and neuropharmacology, cellular and molecular neuroscience, molecular biology, cell biology, toxicology.
Studies of plant extracts are not suitable for Pharmacological Reports.