Wasp pollination and pollinator filtering by dense hairs at the floral tube entrance in Marsdenia tinctoria (Apocynaceae).

IF 2.7 3区 生物学 Q2 PLANT SCIENCES Journal of Plant Research Pub Date : 2025-02-20 DOI:10.1007/s10265-025-01621-z
Ko Mochizuki, Ayako Watanabe-Taneda
{"title":"Wasp pollination and pollinator filtering by dense hairs at the floral tube entrance in Marsdenia tinctoria (Apocynaceae).","authors":"Ko Mochizuki, Ayako Watanabe-Taneda","doi":"10.1007/s10265-025-01621-z","DOIUrl":null,"url":null,"abstract":"<p><p>The physical filtering of pollinators is an important factor influencing pollination effectiveness. This study explored the potential functions of dense hairs that completely obstruct the entrance of floral tube in Marsdenia tinctoria by characterizing the flowers of this species, as well as its pollinators and their behavior. The corolla was white upon blooming in the morning, then turned yellow at night, and the flower finally dropped by the third morning. The hairs tended to be disheveled in yellow-petaled flowers. Pollination success increased with floral age. Direct observations of flowers in natural M. tinctoria populations over a period of 32 h recorded 126 visitors, of which 70% were wasps. We observed pollinia attached to the mouthparts of wasps, carpenter bees, and honeybees, but not to those of butterflies, moths, flies, or ants. Detailed examination of insect mouthparts and floral morphology indicated that insect visitors that acted as pollinators had mouthparts longer than the floral tubes, equipped with hairs to which pollinia could attach. The mouthparts of potter wasps were often covered with pollinaria, carrying on average 30-75 pollinia. The dense floral hairs were penetrated by large-bodied visitors, and blocked smaller visitors. Disturbance of these floral hairs allowed smaller insects to access nectar, suggesting that the hairs function in preventing nectar theft by smaller insects. This study presents the first case of wasp pollination in the genus Marsdenia and provides insights into the potential function of its dense floral hairs, a synapomorphy of this genus, in filtering floral visitors.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10265-025-01621-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The physical filtering of pollinators is an important factor influencing pollination effectiveness. This study explored the potential functions of dense hairs that completely obstruct the entrance of floral tube in Marsdenia tinctoria by characterizing the flowers of this species, as well as its pollinators and their behavior. The corolla was white upon blooming in the morning, then turned yellow at night, and the flower finally dropped by the third morning. The hairs tended to be disheveled in yellow-petaled flowers. Pollination success increased with floral age. Direct observations of flowers in natural M. tinctoria populations over a period of 32 h recorded 126 visitors, of which 70% were wasps. We observed pollinia attached to the mouthparts of wasps, carpenter bees, and honeybees, but not to those of butterflies, moths, flies, or ants. Detailed examination of insect mouthparts and floral morphology indicated that insect visitors that acted as pollinators had mouthparts longer than the floral tubes, equipped with hairs to which pollinia could attach. The mouthparts of potter wasps were often covered with pollinaria, carrying on average 30-75 pollinia. The dense floral hairs were penetrated by large-bodied visitors, and blocked smaller visitors. Disturbance of these floral hairs allowed smaller insects to access nectar, suggesting that the hairs function in preventing nectar theft by smaller insects. This study presents the first case of wasp pollination in the genus Marsdenia and provides insights into the potential function of its dense floral hairs, a synapomorphy of this genus, in filtering floral visitors.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Plant Research
Journal of Plant Research 生物-植物科学
CiteScore
5.40
自引率
3.60%
发文量
59
审稿时长
1 months
期刊介绍: The Journal of Plant Research is an international publication that gathers and disseminates fundamental knowledge in all areas of plant sciences. Coverage extends to every corner of the field, including such topics as evolutionary biology, phylogeography, phylogeny, taxonomy, genetics, ecology, morphology, physiology, developmental biology, cell biology, molecular biology, biochemistry, biophysics, bioinformatics, and systems biology. The journal presents full-length research articles that describe original and fundamental findings of significance that contribute to understanding of plants, as well as shorter communications reporting significant new findings, technical notes on new methodology, and invited review articles.
期刊最新文献
Wasp pollination and pollinator filtering by dense hairs at the floral tube entrance in Marsdenia tinctoria (Apocynaceae). Pressure-volume curves of fine roots reveal intraspecific variation across different elevations in a subalpine forest. The variation of summer heat resistance was associated with leaf transpiration rate in relatively large-leaf Rhododendron plants in southwest China. Differences in plant responses to nitrogen addition between the central and edge populations of invasive Galinsoga quadriradiata in China. Pregnane derivatives in wheat (Triticum aestivum) and their potential role in generative development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1