Competitive mechanism between light extraction efficiency and sidewall passivated effect in the green micro-LEDs with varied thickness of Al2O3layer.

IF 2.8 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Nanotechnology Pub Date : 2025-02-27 DOI:10.1088/1361-6528/adb852
Youcai Deng, Denghai Li, Yurong Dai, Zongmin Lin, Youqin Lin, Zongyuan Liu, Xinxing Chen, Hao-Chung Kuo, Zhong Chen, Shouqiang Lai, Tingzhu Wu
{"title":"Competitive mechanism between light extraction efficiency and sidewall passivated effect in the green micro-LEDs with varied thickness of Al<sub>2</sub>O<sub>3</sub>layer.","authors":"Youcai Deng, Denghai Li, Yurong Dai, Zongmin Lin, Youqin Lin, Zongyuan Liu, Xinxing Chen, Hao-Chung Kuo, Zhong Chen, Shouqiang Lai, Tingzhu Wu","doi":"10.1088/1361-6528/adb852","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, green micro-light-emitting diodes (<i>μ</i>-LEDs) with Al<sub>2</sub>O<sub>3</sub>layers of varying thicknesses (0, 30, 60, and 90 nm) was fabricated using atomic layer deposition (ALD) technology. The optoelectronic characteristics of devices was measured and investigated. Current-voltage (<i>I</i>-<i>V</i>) measurements indicate that the ALD passivation layer effectively reduces leakage current. By applying the<i>ABC + f(n)</i>model to analyze external quantum efficiency, the internal physical mechanisms that the ALD passivation layer enhances the optoelectronic performance of green<i>μ</i>-LEDs was identified. Optical simulations demonstrated the transmittance relationship for different ALD passivation layer thicknesses, explaining improvements of light extraction efficiency. Furthermore, aging tests confirmed that the ALD passivation layer significantly increases the stability of green<i>μ</i>-LEDs. These findings offer valuable insights for enhancing the luminous efficiency and reliability of green<i>μ</i>-LEDs.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/adb852","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, green micro-light-emitting diodes (μ-LEDs) with Al2O3layers of varying thicknesses (0, 30, 60, and 90 nm) was fabricated using atomic layer deposition (ALD) technology. The optoelectronic characteristics of devices was measured and investigated. Current-voltage (I-V) measurements indicate that the ALD passivation layer effectively reduces leakage current. By applying theABC + f(n)model to analyze external quantum efficiency, the internal physical mechanisms that the ALD passivation layer enhances the optoelectronic performance of greenμ-LEDs was identified. Optical simulations demonstrated the transmittance relationship for different ALD passivation layer thicknesses, explaining improvements of light extraction efficiency. Furthermore, aging tests confirmed that the ALD passivation layer significantly increases the stability of greenμ-LEDs. These findings offer valuable insights for enhancing the luminous efficiency and reliability of greenμ-LEDs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不同厚度 Al2O3 层的绿色微型 LED 中光萃取效率与侧壁钝化效应之间的竞争机制。
本研究采用原子层沉积(ALD)技术制备了不同厚度(0、30、60和90 nm) Al2O3层的绿色微发光二极管(μ- led)。对器件的光电特性进行了测量和研究。电流-电压(I -V)测量表明,ALD钝化层有效地降低了泄漏电流。通过ABC + f(n)模型分析外量子效率(EQE),确定了ALD钝化层提高绿色μ- led光电性能的内部物理机制。光学模拟显示了不同ALD钝化层厚度的透射率关系,解释了光提取效率(LEE)的提高。老化实验证实ALD钝化层显著提高了绿色μ- led的稳定性。这些发现为提高绿色μ- led的发光效率和可靠性提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanotechnology
Nanotechnology 工程技术-材料科学:综合
CiteScore
7.10
自引率
5.70%
发文量
820
审稿时长
2.5 months
期刊介绍: The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.
期刊最新文献
Comparative study of crystallite size and microstructural parameters of Fe3O4and CoFe2O4nanoparticles synthesized via sol-gel auto combustion method. Half-metallicity induced by Cr atoms on the surface of ultra-thin Cr2Te3 film: first principles study. Au-decorated carbon nanopillar array for facile SERS substrate for the detection of R6G dye. Tuning electrical performance of dual-gate semiconducting graphene field-effect transistor using plasma parameters. Electrical conductivity of randomly placed linear wires: a mean field approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1