System for Predicting Neurological Outcomes Following Cardiac Arrest Based on Clinical Predictors Using a Machine Learning Method: The Neurological Outcomes After Cardiac Arrest Method.
Tae Jung Kim, Jungyo Suh, Soo-Hyun Park, Youngjoon Kim, Sang-Bae Ko
{"title":"System for Predicting Neurological Outcomes Following Cardiac Arrest Based on Clinical Predictors Using a Machine Learning Method: The Neurological Outcomes After Cardiac Arrest Method.","authors":"Tae Jung Kim, Jungyo Suh, Soo-Hyun Park, Youngjoon Kim, Sang-Bae Ko","doi":"10.1007/s12028-025-02222-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>A multimodal approach may prove effective for predicting clinical outcomes following cardiac arrest (CA). We aimed to develop a practical predictive model that incorporates clinical factors related to CA and multiple prognostic tests using machine learning methods.</p><p><strong>Methods: </strong>The neurological outcomes after CA (NOCA) method for predicting poor outcomes were developed using data from 390 patients with CA between May 2018 and June 2023. The outcome was poor neurological outcome, defined as a Cerebral Performance Category score of 3-5 at discharge. We analyzed 31 variables describing the circumstances at CA, demographics, comorbidities, and prognostic studies. The prognostic method was developed based on an extreme gradient-boosting algorithm with threefold cross-validation and hyperparameter optimization. The performance of the predictive model was evaluated using the receiver operating characteristic curve analysis and calculating the area under the curve (AUC).</p><p><strong>Results: </strong>Of the 390 total patients (mean age 64.2 years; 71.3% male), 235 (60.3%) experienced poor outcomes at discharge. We selected variables to predict poor neurological outcomes using least absolute shrinkage and selection operator regression. The Glasgow Coma Scale-M (best motor response), electroencephalographic features, the neurological pupil index, time from CA to return of spontaneous circulation, and brain imaging were found to be important key parameters in the NOCA score. The AUC of the NOCA method was 0.965 (95% confidence interval 0.941-0.976).</p><p><strong>Conclusions: </strong>The NOCA score represents a simple method for predicting neurological outcomes, with good performance in patients with CA, using a machine learning analysis that incorporates widely available variables.</p>","PeriodicalId":19118,"journal":{"name":"Neurocritical Care","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocritical Care","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12028-025-02222-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: A multimodal approach may prove effective for predicting clinical outcomes following cardiac arrest (CA). We aimed to develop a practical predictive model that incorporates clinical factors related to CA and multiple prognostic tests using machine learning methods.
Methods: The neurological outcomes after CA (NOCA) method for predicting poor outcomes were developed using data from 390 patients with CA between May 2018 and June 2023. The outcome was poor neurological outcome, defined as a Cerebral Performance Category score of 3-5 at discharge. We analyzed 31 variables describing the circumstances at CA, demographics, comorbidities, and prognostic studies. The prognostic method was developed based on an extreme gradient-boosting algorithm with threefold cross-validation and hyperparameter optimization. The performance of the predictive model was evaluated using the receiver operating characteristic curve analysis and calculating the area under the curve (AUC).
Results: Of the 390 total patients (mean age 64.2 years; 71.3% male), 235 (60.3%) experienced poor outcomes at discharge. We selected variables to predict poor neurological outcomes using least absolute shrinkage and selection operator regression. The Glasgow Coma Scale-M (best motor response), electroencephalographic features, the neurological pupil index, time from CA to return of spontaneous circulation, and brain imaging were found to be important key parameters in the NOCA score. The AUC of the NOCA method was 0.965 (95% confidence interval 0.941-0.976).
Conclusions: The NOCA score represents a simple method for predicting neurological outcomes, with good performance in patients with CA, using a machine learning analysis that incorporates widely available variables.
期刊介绍:
Neurocritical Care is a peer reviewed scientific publication whose major goal is to disseminate new knowledge on all aspects of acute neurological care. It is directed towards neurosurgeons, neuro-intensivists, neurologists, anesthesiologists, emergency physicians, and critical care nurses treating patients with urgent neurologic disorders. These are conditions that may potentially evolve rapidly and could need immediate medical or surgical intervention. Neurocritical Care provides a comprehensive overview of current developments in intensive care neurology, neurosurgery and neuroanesthesia and includes information about new therapeutic avenues and technological innovations. Neurocritical Care is the official journal of the Neurocritical Care Society.