Evaluation of [18F]AlF NOTA-5G, an Aluminum [18F]fluoride Labeled Peptide Targeting the Cell Surface Receptor Integrin Alpha(v)beta(6) for PET Imaging.

IF 3 4区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Molecular Imaging and Biology Pub Date : 2025-02-20 DOI:10.1007/s11307-025-01989-3
Sven H Hausner, Ryan A Davis, Tanushree Ganguly, Rebecca Harris, Julie L Sutcliffe
{"title":"Evaluation of [<sup>18</sup>F]AlF NOTA-5G, an Aluminum [<sup>18</sup>F]fluoride Labeled Peptide Targeting the Cell Surface Receptor Integrin Alpha(v)beta(6) for PET Imaging.","authors":"Sven H Hausner, Ryan A Davis, Tanushree Ganguly, Rebecca Harris, Julie L Sutcliffe","doi":"10.1007/s11307-025-01989-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Peptide-based probes targeting integrin α<sub>v</sub>β<sub>6</sub> have shown promise in clinical trials for cancer imaging based on the high over-expression of this epithelial-specific cell surface receptor in many cancerous tissues. Recently, the α<sub>v</sub>β<sub>6</sub>-targeting gallium-68 labeled DOTA-5G peptide, [<sup>68</sup>Ga]Ga DOTA-5G, demonstrated diagnostic value in patients with metastatic pancreatic cancer. To facilitate adoption at sites without access to gallium-68 and take advantage of the characteristics of fluorine-18 through convenient [<sup>18</sup>F]fluoride chelation chemistry, this study evaluated the fluorine-18 labeled analog, [<sup>18</sup>F]AlF NOTA-5G, in vitro and in vivo in a tumor mouse model, and compared it to [<sup>68</sup>Ga]Ga DOTA-5G.</p><p><strong>Procedures: </strong>NOTA-5G was synthesized on solid phase and radiolabeled with aluminum [<sup>18</sup>F]fluoride to generate [<sup>18</sup>F]AlF NOTA-5G. Cell binding and internalization of [<sup>18</sup>F]AlF NOTA-5G were evaluated in paired DX3puroβ6 (α<sub>v</sub>β<sub>6</sub> +) and DX3puro (α<sub>v</sub>β<sub>6</sub> -), and pancreatic BxPC-3 (α<sub>v</sub>β<sub>6</sub> +) cells. Imaging (1-6 h) and biodistribution were performed in BxPC-3 tumor-bearing mice.</p><p><strong>Results: </strong>[<sup>18</sup>F]AlF NOTA-5G was obtained in > 93% radiochemical purity. Cell binding was α<sub>v</sub>β<sub>6</sub>-targeted (1 h: 66% bound to DX3puroβ6, vs 2% to DX3puro), and ≥ 50% of bound activity was internalized; analogous to [<sup>68</sup>Ga]Ga DOTA-5G, PET imaging showed clearly delineated tumors. Excretion remained primarily renal (1 to 4 h: 18.6 to 12.5% ID/g). Tumor uptake remained relatively steady (1 to 4 h: 2.3 ± 0.4 to 1.8 ± 0.6% ID/g - closely matching [<sup>68</sup>Ga]Ga DOTA-5G with 2.6 ± 0.8 and 2.0 ± 0.6% ID/g at 1 and 2 h), resulting in tumor/pancreas, tumor/liver, and tumor/blood ratios of 18/1, 24/1, and 162/1, respectively (4 h); by comparison, for [<sup>68</sup>Ga]Ga DOTA-5G the values were 21/1, 20/1, and 22/1 (2 h).</p><p><strong>Conclusions: </strong>[<sup>18</sup>F]AlF NOTA-5G demonstrated selective α<sub>v</sub>β<sub>6</sub>-targeting and tumor uptake similar to [<sup>68</sup>Ga]Ga DOTA-5G. The tumor-to-background ratio resulted high-contrast PET images, with an extended imaging window compared to [<sup>68</sup>Ga]Ga DOTA-5G. The synthesis of [<sup>18</sup>F]AlF NOTA-5G is currently being optimized for clinical production.</p>","PeriodicalId":18760,"journal":{"name":"Molecular Imaging and Biology","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Imaging and Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11307-025-01989-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Peptide-based probes targeting integrin αvβ6 have shown promise in clinical trials for cancer imaging based on the high over-expression of this epithelial-specific cell surface receptor in many cancerous tissues. Recently, the αvβ6-targeting gallium-68 labeled DOTA-5G peptide, [68Ga]Ga DOTA-5G, demonstrated diagnostic value in patients with metastatic pancreatic cancer. To facilitate adoption at sites without access to gallium-68 and take advantage of the characteristics of fluorine-18 through convenient [18F]fluoride chelation chemistry, this study evaluated the fluorine-18 labeled analog, [18F]AlF NOTA-5G, in vitro and in vivo in a tumor mouse model, and compared it to [68Ga]Ga DOTA-5G.

Procedures: NOTA-5G was synthesized on solid phase and radiolabeled with aluminum [18F]fluoride to generate [18F]AlF NOTA-5G. Cell binding and internalization of [18F]AlF NOTA-5G were evaluated in paired DX3puroβ6 (αvβ6 +) and DX3puro (αvβ6 -), and pancreatic BxPC-3 (αvβ6 +) cells. Imaging (1-6 h) and biodistribution were performed in BxPC-3 tumor-bearing mice.

Results: [18F]AlF NOTA-5G was obtained in > 93% radiochemical purity. Cell binding was αvβ6-targeted (1 h: 66% bound to DX3puroβ6, vs 2% to DX3puro), and ≥ 50% of bound activity was internalized; analogous to [68Ga]Ga DOTA-5G, PET imaging showed clearly delineated tumors. Excretion remained primarily renal (1 to 4 h: 18.6 to 12.5% ID/g). Tumor uptake remained relatively steady (1 to 4 h: 2.3 ± 0.4 to 1.8 ± 0.6% ID/g - closely matching [68Ga]Ga DOTA-5G with 2.6 ± 0.8 and 2.0 ± 0.6% ID/g at 1 and 2 h), resulting in tumor/pancreas, tumor/liver, and tumor/blood ratios of 18/1, 24/1, and 162/1, respectively (4 h); by comparison, for [68Ga]Ga DOTA-5G the values were 21/1, 20/1, and 22/1 (2 h).

Conclusions: [18F]AlF NOTA-5G demonstrated selective αvβ6-targeting and tumor uptake similar to [68Ga]Ga DOTA-5G. The tumor-to-background ratio resulted high-contrast PET images, with an extended imaging window compared to [68Ga]Ga DOTA-5G. The synthesis of [18F]AlF NOTA-5G is currently being optimized for clinical production.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
目的:基于上皮特异性细胞表面受体αvβ6在许多癌症组织中的高表达,靶向整合素αvβ6的肽类探针在癌症成像的临床试验中显示出前景。最近,αvβ6 靶向镓-68 标记的 DOTA-5G 肽([68Ga]Ga DOTA-5G)在转移性胰腺癌患者中显示出诊断价值。为了便于在无法获得镓-68的部位采用,并通过方便的[18F]氟化物螯合化学利用氟-18的特性,本研究在肿瘤小鼠模型中对氟-18标记的类似物[18F]AlF NOTA-5G进行了体外和体内评估,并与[68Ga]Ga DOTA-5G进行了比较:在固相上合成 NOTA-5G,并用[18F]氟化铝进行放射性标记,生成[18F]AlF NOTA-5G。在配对的 DX3puroβ6 (αvβ6 +) 和 DX3puro (αvβ6 -) 以及胰腺 BxPC-3 (αvβ6 +) 细胞中评估 [18F]AlF NOTA-5G 的细胞结合和内化情况。在 BxPC-3 肿瘤小鼠体内进行了成像(1-6 h)和生物分布研究:结果:[18F]AlF NOTA-5G 的放射化学纯度大于 93%。细胞结合是以αvβ6为靶点的(1 h:66%与DX3puroβ6结合,2%与DX3puro结合),≥50%的结合活性被内化;与[68Ga]Ga DOTA-5G类似,PET成像显示肿瘤轮廓清晰。排泄仍然主要通过肾脏(1 至 4 小时:18.6% 至 12.5% ID/g)。肿瘤摄取量保持相对稳定(1 至 4 h:2.3 ± 0.4 至 1.8 ± 0.6% ID/g - 与[68Ga]Ga DOTA-5G 在 1 和 4 h 分别为 2.6 ± 0.8 和 2.0 ± 0.6%的ID/g(1小时和2小时),导致肿瘤/胰腺、肿瘤/肝脏和肿瘤/血液的比值分别为18/1、24/1和162/1(4小时);相比之下,[68Ga]Ga DOTA-5G的比值分别为21/1、20/1和22/1(2小时):结论:[18F]AlF NOTA-5G表现出与[68Ga]Ga DOTA-5G相似的选择性αvβ6靶向性和肿瘤摄取性。与[68Ga]Ga DOTA-5G相比,[18F]AlF NOTA-5G的肿瘤-背景比可产生高对比度的正电子发射计算机断层图像,并具有更宽的成像窗口。目前正在优化[18F]AlF NOTA-5G的合成,以便用于临床生产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.90
自引率
3.20%
发文量
95
审稿时长
3 months
期刊介绍: Molecular Imaging and Biology (MIB) invites original contributions (research articles, review articles, commentaries, etc.) on the utilization of molecular imaging (i.e., nuclear imaging, optical imaging, autoradiography and pathology, MRI, MPI, ultrasound imaging, radiomics/genomics etc.) to investigate questions related to biology and health. The objective of MIB is to provide a forum to the discovery of molecular mechanisms of disease through the use of imaging techniques. We aim to investigate the biological nature of disease in patients and establish new molecular imaging diagnostic and therapy procedures. Some areas that are covered are: Preclinical and clinical imaging of macromolecular targets (e.g., genes, receptors, enzymes) involved in significant biological processes. The design, characterization, and study of new molecular imaging probes and contrast agents for the functional interrogation of macromolecular targets. Development and evaluation of imaging systems including instrumentation, image reconstruction algorithms, image analysis, and display. Development of molecular assay approaches leading to quantification of the biological information obtained in molecular imaging. Study of in vivo animal models of disease for the development of new molecular diagnostics and therapeutics. Extension of in vitro and in vivo discoveries using disease models, into well designed clinical research investigations. Clinical molecular imaging involving clinical investigations, clinical trials and medical management or cost-effectiveness studies.
期刊最新文献
Evaluation of [18F]JNJ-CSF1R-1 as a Positron Emission Tomography Ligand Targeting Colony-Stimulating Factor 1 Receptor. Evaluation of [18F]AlF NOTA-5G, an Aluminum [18F]fluoride Labeled Peptide Targeting the Cell Surface Receptor Integrin Alpha(v)beta(6) for PET Imaging. Leveraging Radiomics and Hybrid Quantum-Classical Convolutional Networks for Non-Invasive Detection of Microsatellite Instability in Colorectal Cancer. Test-retest Assessment of Biventricular Myocardial Oxidative Metabolism and Perfusion in Pulmonary Hypertension Patients Using 11C-acetate PET Imaging: A Pilot Study. Optical-magnetic Imaging for Optimizing Lymphodepletion-TIL Combination Therapy in Breast Cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1