{"title":"Is a less wrong model always more useful? Methodological considerations for using ant colony optimization in measure development.","authors":"Yixiao Dong, Denis Dumas","doi":"10.1037/met0000734","DOIUrl":null,"url":null,"abstract":"<p><p>With the advancement of artificial intelligence (AI), many AI-derived techniques have been adapted into psychological and behavioral science research, including measure development, which is a key task for psychometricians and methodologists. Ant colony optimization (ACO) is an AI-derived metaheuristic algorithm that has been integrated into the structural equation modeling framework to search for optimal (or near optimal) solutions. ACO-driven measurement modeling is an emerging method for constructing scales, but psychological researchers generally lack the necessary understanding of ACO-optimized models and outcome solutions. This article aims to investigate whether ACO solutions are indeed optimal and whether the optimized measurement models of ACO are always more psychologically useful compared to conventional ones built by human psychometricians. To work toward these goals, we highlight five essential methodological considerations for using ACO in measure development: (a) pursuing a local or global optimum, (b) avoiding a subjective optimum, (c) optimizing content validity, (d) bridging the gap between theory and model, and (e) recognizing limitations of unidirectionality. A joint data set containing item-level data from German (<i>n</i> = 297) and the United States (<i>n</i> = 334) samples was employed, and seven illustrative ACO analyses with various configurations were conducted to illustrate or facilitate the discussions of these considerations. We conclude that measurement solutions from the current ACO have not yet become optimal or close to optimal, and the optimized measurement models of ACO may be becoming more useful. (PsycInfo Database Record (c) 2025 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":" ","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/met0000734","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
With the advancement of artificial intelligence (AI), many AI-derived techniques have been adapted into psychological and behavioral science research, including measure development, which is a key task for psychometricians and methodologists. Ant colony optimization (ACO) is an AI-derived metaheuristic algorithm that has been integrated into the structural equation modeling framework to search for optimal (or near optimal) solutions. ACO-driven measurement modeling is an emerging method for constructing scales, but psychological researchers generally lack the necessary understanding of ACO-optimized models and outcome solutions. This article aims to investigate whether ACO solutions are indeed optimal and whether the optimized measurement models of ACO are always more psychologically useful compared to conventional ones built by human psychometricians. To work toward these goals, we highlight five essential methodological considerations for using ACO in measure development: (a) pursuing a local or global optimum, (b) avoiding a subjective optimum, (c) optimizing content validity, (d) bridging the gap between theory and model, and (e) recognizing limitations of unidirectionality. A joint data set containing item-level data from German (n = 297) and the United States (n = 334) samples was employed, and seven illustrative ACO analyses with various configurations were conducted to illustrate or facilitate the discussions of these considerations. We conclude that measurement solutions from the current ACO have not yet become optimal or close to optimal, and the optimized measurement models of ACO may be becoming more useful. (PsycInfo Database Record (c) 2025 APA, all rights reserved).
期刊介绍:
Psychological Methods is devoted to the development and dissemination of methods for collecting, analyzing, understanding, and interpreting psychological data. Its purpose is the dissemination of innovations in research design, measurement, methodology, and quantitative and qualitative analysis to the psychological community; its further purpose is to promote effective communication about related substantive and methodological issues. The audience is expected to be diverse and to include those who develop new procedures, those who are responsible for undergraduate and graduate training in design, measurement, and statistics, as well as those who employ those procedures in research.