Challenge of missing data in observational studies: investigating cross-sectional imputation methods for assessing disease activity in axial spondyloarthritis.

IF 5.1 2区 医学 Q1 RHEUMATOLOGY RMD Open Pub Date : 2025-02-20 DOI:10.1136/rmdopen-2024-004844
Stylianos Georgiadis, Marion Pons, Simon Rasmussen, Merete Lund Hetland, Louise Linde, Daniela di Giuseppe, Brigitte Michelsen, Johan K Wallman, Tor Olofsson, Jakub Zavada, Bente Glintborg, Anne G Loft, Catalin Codreanu, Daniel Melim, Diogo Almeida, Sella Aarrestad Provan, Tore K Kvien, Vappu Rantalaiho, Ritva Peltomaa, Bjorn Gudbjornsson, Olafur Palsson, Ovidiu Rotariu, Ross MacDonald, Ziga Rotar, Katja Perdan Pirkmajer, Karin Lass, Florenzo Iannone, Adrian Ciurea, Mikkel Østergaard, L M Ørnbjerg
{"title":"Challenge of missing data in observational studies: investigating cross-sectional imputation methods for assessing disease activity in axial spondyloarthritis.","authors":"Stylianos Georgiadis, Marion Pons, Simon Rasmussen, Merete Lund Hetland, Louise Linde, Daniela di Giuseppe, Brigitte Michelsen, Johan K Wallman, Tor Olofsson, Jakub Zavada, Bente Glintborg, Anne G Loft, Catalin Codreanu, Daniel Melim, Diogo Almeida, Sella Aarrestad Provan, Tore K Kvien, Vappu Rantalaiho, Ritva Peltomaa, Bjorn Gudbjornsson, Olafur Palsson, Ovidiu Rotariu, Ross MacDonald, Ziga Rotar, Katja Perdan Pirkmajer, Karin Lass, Florenzo Iannone, Adrian Ciurea, Mikkel Østergaard, L M Ørnbjerg","doi":"10.1136/rmdopen-2024-004844","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>We aimed to compare various methods for imputing disease activity in longitudinally collected observational data of patients with axial spondyloarthritis (axSpA).</p><p><strong>Methods: </strong>We conducted a simulation study on data from 8583 axSpA patients from ten European registries. Disease activity was assessed by the Axial Spondyloarthritis Disease Activity Score (ASDAS) and the corresponding low disease activity (LDA; ASDAS<2.1) state at baseline, 6 and 12 months. We focused on cross-sectional methods which impute missing values of an individual at a particular time point based on the available information from other individuals at that time point. We applied nine single and five multiple imputation methods, covering mean, regression and hot deck methods. The performance of each imputation method was evaluated via relative bias and coverage of 95% confidence intervals for the mean ASDAS and the derived proportion of patients in LDA.</p><p><strong>Results: </strong>Hot deck imputation methods outperformed mean and regression methods, particularly when assessing LDA. Multiple imputation procedures provided better coverage than the corresponding single imputation ones. However, none of the evaluated methods produced unbiased estimates with adequate coverage across all time points, with performance for missing baseline data being worse than for missing follow-up data. Predictive mean and weighted predictive mean hot deck imputation procedures consistently provided results with low bias.</p><p><strong>Conclusions: </strong>This study contributes to the available methods for imputing disease activity in observational research. Hot deck imputation using predictive mean matching exhibited the highest robustness and is thus our suggested approach.</p>","PeriodicalId":21396,"journal":{"name":"RMD Open","volume":"11 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11843021/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RMD Open","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/rmdopen-2024-004844","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RHEUMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: We aimed to compare various methods for imputing disease activity in longitudinally collected observational data of patients with axial spondyloarthritis (axSpA).

Methods: We conducted a simulation study on data from 8583 axSpA patients from ten European registries. Disease activity was assessed by the Axial Spondyloarthritis Disease Activity Score (ASDAS) and the corresponding low disease activity (LDA; ASDAS<2.1) state at baseline, 6 and 12 months. We focused on cross-sectional methods which impute missing values of an individual at a particular time point based on the available information from other individuals at that time point. We applied nine single and five multiple imputation methods, covering mean, regression and hot deck methods. The performance of each imputation method was evaluated via relative bias and coverage of 95% confidence intervals for the mean ASDAS and the derived proportion of patients in LDA.

Results: Hot deck imputation methods outperformed mean and regression methods, particularly when assessing LDA. Multiple imputation procedures provided better coverage than the corresponding single imputation ones. However, none of the evaluated methods produced unbiased estimates with adequate coverage across all time points, with performance for missing baseline data being worse than for missing follow-up data. Predictive mean and weighted predictive mean hot deck imputation procedures consistently provided results with low bias.

Conclusions: This study contributes to the available methods for imputing disease activity in observational research. Hot deck imputation using predictive mean matching exhibited the highest robustness and is thus our suggested approach.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
目的我们旨在比较在纵向收集的轴性脊柱关节炎(axSpA)患者观察数据中归因疾病活动性的各种方法:我们对来自十个欧洲登记处的 8583 名 axSpA 患者的数据进行了模拟研究。疾病活动度通过轴性脊柱关节炎疾病活动度评分(ASDAS)和相应的低疾病活动度(LDA;ASDASResults)进行评估:热甲板归因法的效果优于平均法和回归法,尤其是在评估LDA时。多重归因程序比相应的单一归因程序提供了更好的覆盖率。然而,所评估的方法中没有一种能在所有时间点上产生无偏估计值和足够的覆盖率,缺失基线数据的表现比缺失随访数据的表现差。预测均值和加权预测均值热甲板估算程序始终提供低偏差的结果:这项研究为现有的观察性研究中疾病活动性估算方法做出了贡献。使用预测均值匹配的热甲板估算表现出最高的稳健性,因此是我们建议采用的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
RMD Open
RMD Open RHEUMATOLOGY-
CiteScore
7.30
自引率
6.50%
发文量
205
审稿时长
14 weeks
期刊介绍: RMD Open publishes high quality peer-reviewed original research covering the full spectrum of musculoskeletal disorders, rheumatism and connective tissue diseases, including osteoporosis, spine and rehabilitation. Clinical and epidemiological research, basic and translational medicine, interesting clinical cases, and smaller studies that add to the literature are all considered.
期刊最新文献
Decreased concentrations of C5a complement receptor antibodies are associated with relapse in eosinophilic granulomatosis with polyangiitis (EGPA). Experimental myositis: an optimised version of C-protein-induced myositis. Patients with systemic autoimmune rheumatic diseases remain at risk for hospitalisation for COVID-19 infection in the Omicron era (2022-2024): a retrospective cohort study. Efficacy of upadacitinib in subgroups of patients with axial spondyloarthritis with early versus established disease. Major adverse cardiovascular, thromboembolic and malignancy events in the filgotinib rheumatoid arthritis and ulcerative colitis clinical development programmes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1