Prediction of Severe Fever with Thrombocytopenia Syndrome Under Future Climate Scenarios in Chuzhou, China.

IF 1.8 4区 医学 Q3 INFECTIOUS DISEASES Vector borne and zoonotic diseases Pub Date : 2025-02-21 DOI:10.1089/vbz.2024.0115
Nan Li, Yuhao Li, Donglin Cheng, Longwei Li
{"title":"Prediction of Severe Fever with Thrombocytopenia Syndrome Under Future Climate Scenarios in Chuzhou, China.","authors":"Nan Li, Yuhao Li, Donglin Cheng, Longwei Li","doi":"10.1089/vbz.2024.0115","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Objective:</i></b> Severe fever with thrombocytopenia syndrome (SFTS) poses a significant public health concern in China and has the potential for severe morbidity and mortality. Previous studies on SFTS have focused primarily on analyzing its incidence under existing climate conditions, often overlooking the impacts of future climate change on the disease's distribution. Moreover, the key factors influencing SFTS transmission identified in prior research are limited and lack a comprehensive consideration of multiple environmental and socioeconomic factors in specific regions. <b><i>Methods:</i></b> In this study, by utilizing SFTS case data from Chuzhou city alongside multisource environmental variables, the maximum entropy ecological niche (MaxEnt) model was employed to identify the key climatic factors influencing the distribution of SFTS. Risk areas were projected for the present and future climate scenarios, including shared socioeconomic pathway (SSP)126, SSP245, SSP370, and SSP585. <b><i>Results:</i></b> The results indicate that (1) precipitation in the driest quarter, elevation, and precipitation in the wettest month are the most critical variables; (2) potential risk areas are situated predominantly in the central hilly region, with the total area of medium- and high-risk zones measuring 5731.86 km<sup>2</sup>, which accounts for 42.67% of the total area; (3) in future climate scenarios, the central-south and southwestern regions emerge as high-risk areas, with the maximum area of future high-risk zones reaching 6417.8398 km<sup>2</sup>, projected for the 2030s under the SSP585 scenario; and (4) the current epicenter of the SFTS risk area is located in Zhang Baling town (118°12'23″E, 32°28'56″N). Under the SSP126 and SSP370 scenarios, the epicenter exhibits minimal movement, whereas significant shifts occur under the SSP245 and SSP585 scenarios. <b><i>Conclusion:</i></b> These findings provide essential insights for formulating scientifically grounded prevention and control strategies against SFTS in Chuzhou city.</p>","PeriodicalId":23683,"journal":{"name":"Vector borne and zoonotic diseases","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vector borne and zoonotic diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/vbz.2024.0115","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Severe fever with thrombocytopenia syndrome (SFTS) poses a significant public health concern in China and has the potential for severe morbidity and mortality. Previous studies on SFTS have focused primarily on analyzing its incidence under existing climate conditions, often overlooking the impacts of future climate change on the disease's distribution. Moreover, the key factors influencing SFTS transmission identified in prior research are limited and lack a comprehensive consideration of multiple environmental and socioeconomic factors in specific regions. Methods: In this study, by utilizing SFTS case data from Chuzhou city alongside multisource environmental variables, the maximum entropy ecological niche (MaxEnt) model was employed to identify the key climatic factors influencing the distribution of SFTS. Risk areas were projected for the present and future climate scenarios, including shared socioeconomic pathway (SSP)126, SSP245, SSP370, and SSP585. Results: The results indicate that (1) precipitation in the driest quarter, elevation, and precipitation in the wettest month are the most critical variables; (2) potential risk areas are situated predominantly in the central hilly region, with the total area of medium- and high-risk zones measuring 5731.86 km2, which accounts for 42.67% of the total area; (3) in future climate scenarios, the central-south and southwestern regions emerge as high-risk areas, with the maximum area of future high-risk zones reaching 6417.8398 km2, projected for the 2030s under the SSP585 scenario; and (4) the current epicenter of the SFTS risk area is located in Zhang Baling town (118°12'23″E, 32°28'56″N). Under the SSP126 and SSP370 scenarios, the epicenter exhibits minimal movement, whereas significant shifts occur under the SSP245 and SSP585 scenarios. Conclusion: These findings provide essential insights for formulating scientifically grounded prevention and control strategies against SFTS in Chuzhou city.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.70
自引率
4.80%
发文量
73
审稿时长
3-8 weeks
期刊介绍: Vector-Borne and Zoonotic Diseases is an authoritative, peer-reviewed journal providing basic and applied research on diseases transmitted to humans by invertebrate vectors or non-human vertebrates. The Journal examines geographic, seasonal, and other risk factors that influence the transmission, diagnosis, management, and prevention of this group of infectious diseases, and identifies global trends that have the potential to result in major epidemics. Vector-Borne and Zoonotic Diseases coverage includes: -Ecology -Entomology -Epidemiology -Infectious diseases -Microbiology -Parasitology -Pathology -Public health -Tropical medicine -Wildlife biology -Bacterial, rickettsial, viral, and parasitic zoonoses
期刊最新文献
Isolation and Characterization of Getah Virus GD2202 from Mosquitoes in Foshan, China. Prediction of Severe Fever with Thrombocytopenia Syndrome Under Future Climate Scenarios in Chuzhou, China. Serosurveillance Identifies Bourbon Virus-Neutralizing Antibodies in Bobcats, Coyotes, and Red Foxes in Missouri. Assessing the Relationship Between Entomological Surveillance Indices and West Nile Virus Transmission, United States: Systematic Review. First Insight into the Seroprevalence of Hepatitis E Virus and Associated Risk Factors Among Liver Transplant Recipients from Bulgaria.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1