On the use of the Doubly Stochastic Matrix models for the Quadratic Assignment Problem.

IF 4.6 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Evolutionary Computation Pub Date : 2025-02-20 DOI:10.1162/evco_a_00369
Valentino Santucci, Josu Ceberio
{"title":"On the use of the Doubly Stochastic Matrix models for the Quadratic Assignment Problem.","authors":"Valentino Santucci, Josu Ceberio","doi":"10.1162/evco_a_00369","DOIUrl":null,"url":null,"abstract":"<p><p>Permutation problems have captured the attention of the combinatorial optimization community for decades due to the challenge they pose. Although their solutions are naturally encoded as permutations, in each problem, the information to be used to optimize them can vary substantially. In this article, we consider the Quadratic Assignment Problem (QAP) as a case study, and propose using Doubly Stochastic Matrices (DSMs) under the framework of Estimation of Distribution Algorithms. To that end, we design efficient learning and sampling schemes that enable an effective iterative update of the probability model. Conducted experiments on commonly adopted benchmarks for the QAP prove doubly stochastic matrices to be preferred to other four models for permutations, both in terms of effectiveness and computational efficiency. Moreover, additional analyses performed on the structure of the QAP and the Linear Ordering Problem (LOP) show that DSMs are good to deal with assignment problems, but they have interesting capabilities to deal also with ordering problems such as the LOP. The article concludes with a description of the potential uses of DSMs for other optimization paradigms, such as genetic algorithms or model-based gradient search.</p>","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":" ","pages":"1-30"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/evco_a_00369","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Permutation problems have captured the attention of the combinatorial optimization community for decades due to the challenge they pose. Although their solutions are naturally encoded as permutations, in each problem, the information to be used to optimize them can vary substantially. In this article, we consider the Quadratic Assignment Problem (QAP) as a case study, and propose using Doubly Stochastic Matrices (DSMs) under the framework of Estimation of Distribution Algorithms. To that end, we design efficient learning and sampling schemes that enable an effective iterative update of the probability model. Conducted experiments on commonly adopted benchmarks for the QAP prove doubly stochastic matrices to be preferred to other four models for permutations, both in terms of effectiveness and computational efficiency. Moreover, additional analyses performed on the structure of the QAP and the Linear Ordering Problem (LOP) show that DSMs are good to deal with assignment problems, but they have interesting capabilities to deal also with ordering problems such as the LOP. The article concludes with a description of the potential uses of DSMs for other optimization paradigms, such as genetic algorithms or model-based gradient search.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Evolutionary Computation
Evolutionary Computation 工程技术-计算机:理论方法
CiteScore
6.40
自引率
1.50%
发文量
20
审稿时长
3 months
期刊介绍: Evolutionary Computation is a leading journal in its field. It provides an international forum for facilitating and enhancing the exchange of information among researchers involved in both the theoretical and practical aspects of computational systems drawing their inspiration from nature, with particular emphasis on evolutionary models of computation such as genetic algorithms, evolutionary strategies, classifier systems, evolutionary programming, and genetic programming. It welcomes articles from related fields such as swarm intelligence (e.g. Ant Colony Optimization and Particle Swarm Optimization), and other nature-inspired computation paradigms (e.g. Artificial Immune Systems). As well as publishing articles describing theoretical and/or experimental work, the journal also welcomes application-focused papers describing breakthrough results in an application domain or methodological papers where the specificities of the real-world problem led to significant algorithmic improvements that could possibly be generalized to other areas.
期刊最新文献
On the use of the Doubly Stochastic Matrix models for the Quadratic Assignment Problem. P-NP instance decomposition based on the Fourier transform for solving the Linear Ordering Problem. Deep-ELA: Deep Exploratory Landscape Analysis with Self-Supervised Pretrained Transformers for Single- and Multi-Objective Continuous Optimization Problems. Quality Diversity under Sparse Interaction and Sparse Reward: Application to Grasping in Robotics. Runtime Analysis of Typical Decomposition Approaches in MOEA/D for Many-Objective Optimization Problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1