{"title":"On the use of the Doubly Stochastic Matrix models for the Quadratic Assignment Problem.","authors":"Valentino Santucci, Josu Ceberio","doi":"10.1162/evco_a_00369","DOIUrl":null,"url":null,"abstract":"<p><p>Permutation problems have captured the attention of the combinatorial optimization community for decades due to the challenge they pose. Although their solutions are naturally encoded as permutations, in each problem, the information to be used to optimize them can vary substantially. In this article, we consider the Quadratic Assignment Problem (QAP) as a case study, and propose using Doubly Stochastic Matrices (DSMs) under the framework of Estimation of Distribution Algorithms. To that end, we design efficient learning and sampling schemes that enable an effective iterative update of the probability model. Conducted experiments on commonly adopted benchmarks for the QAP prove doubly stochastic matrices to be preferred to other four models for permutations, both in terms of effectiveness and computational efficiency. Moreover, additional analyses performed on the structure of the QAP and the Linear Ordering Problem (LOP) show that DSMs are good to deal with assignment problems, but they have interesting capabilities to deal also with ordering problems such as the LOP. The article concludes with a description of the potential uses of DSMs for other optimization paradigms, such as genetic algorithms or model-based gradient search.</p>","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":" ","pages":"1-30"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/evco_a_00369","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Permutation problems have captured the attention of the combinatorial optimization community for decades due to the challenge they pose. Although their solutions are naturally encoded as permutations, in each problem, the information to be used to optimize them can vary substantially. In this article, we consider the Quadratic Assignment Problem (QAP) as a case study, and propose using Doubly Stochastic Matrices (DSMs) under the framework of Estimation of Distribution Algorithms. To that end, we design efficient learning and sampling schemes that enable an effective iterative update of the probability model. Conducted experiments on commonly adopted benchmarks for the QAP prove doubly stochastic matrices to be preferred to other four models for permutations, both in terms of effectiveness and computational efficiency. Moreover, additional analyses performed on the structure of the QAP and the Linear Ordering Problem (LOP) show that DSMs are good to deal with assignment problems, but they have interesting capabilities to deal also with ordering problems such as the LOP. The article concludes with a description of the potential uses of DSMs for other optimization paradigms, such as genetic algorithms or model-based gradient search.
期刊介绍:
Evolutionary Computation is a leading journal in its field. It provides an international forum for facilitating and enhancing the exchange of information among researchers involved in both the theoretical and practical aspects of computational systems drawing their inspiration from nature, with particular emphasis on evolutionary models of computation such as genetic algorithms, evolutionary strategies, classifier systems, evolutionary programming, and genetic programming. It welcomes articles from related fields such as swarm intelligence (e.g. Ant Colony Optimization and Particle Swarm Optimization), and other nature-inspired computation paradigms (e.g. Artificial Immune Systems). As well as publishing articles describing theoretical and/or experimental work, the journal also welcomes application-focused papers describing breakthrough results in an application domain or methodological papers where the specificities of the real-world problem led to significant algorithmic improvements that could possibly be generalized to other areas.