Tailored Fibrils Approach via Ag(I).Peptidomimetic-Based Interface Design: Efficient Encapsulation of Diverse Active Pharmaceutical Ingredients in Wastewater Remediation during Effluent Treatment Plant (ETP) Processing
{"title":"Tailored Fibrils Approach via Ag(I).Peptidomimetic-Based Interface Design: Efficient Encapsulation of Diverse Active Pharmaceutical Ingredients in Wastewater Remediation during Effluent Treatment Plant (ETP) Processing","authors":"Arun Sharma, Navneet Kaur, Narinder Singh","doi":"10.1021/acs.langmuir.4c04890","DOIUrl":null,"url":null,"abstract":"Pharmaceutical pollution in wastewater poses significant environmental and public health concerns worldwide. Chloramphenicol (CP), an antibiotic widely used in medical and veterinary applications, is among the active pharmaceutical ingredients (APIs) frequently detected in aquatic environments. This study explored the encapsulation of chloramphenicol API in contaminated wastewater using rationally designed fibrations based on the silver metal ion-directed self-assembly of fibrillator-type self-assembling ligand (<b>ANS-3</b>). We further investigated the removal of various commonly prescribed drugs, including antibiotics such as β-lactam (amoxicillin), fluoroquinolone (ciprofloxacin), aminoglycoside (neomycin), and tetracycline; antiparasitic agents with antiprotozoal properties (praziquantel and metronidazole); nonsteroidal anti-inflammatory drugs (NSAIDs) such as phenylbutazone and ketoprofen; the vasodilator isoxsuprine; amphiphilic antidepressants (amitriptyline); and the antiviral drug amantadine. The findings validated the crucial influence of polar multifunctionality and structural complexity in enhancing interactions with <b>Ag</b>.<b>ANS-3</b> matrix, emphasizing its potential for efficient drug sequestration. First, picolinic acid (PA) and phenylalanine (F) were evaluated for their ability to form fibrillar structures, and their morphological characterization revealed well-defined fibrillar networks with varying degrees of porosity and interconnectivity. Then, the strategic inclusion of leucine in synthesizing <b>ANS-3</b> facilitated the formation of robust fibrillar networks, employing its hydrophobic interactions to drive the self-assembly process. Finally, the encapsulation of APIs was evaluated using Ag(I) metal ion-driven <b>ANS-3</b> based self-assembled nanofibrous material. This research contributes to the development of innovative physicochemical wastewater treatment strategies for environmental remediation and validates the importance of rational design in encapsulation-based wastewater remediation technologies.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"65 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c04890","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Pharmaceutical pollution in wastewater poses significant environmental and public health concerns worldwide. Chloramphenicol (CP), an antibiotic widely used in medical and veterinary applications, is among the active pharmaceutical ingredients (APIs) frequently detected in aquatic environments. This study explored the encapsulation of chloramphenicol API in contaminated wastewater using rationally designed fibrations based on the silver metal ion-directed self-assembly of fibrillator-type self-assembling ligand (ANS-3). We further investigated the removal of various commonly prescribed drugs, including antibiotics such as β-lactam (amoxicillin), fluoroquinolone (ciprofloxacin), aminoglycoside (neomycin), and tetracycline; antiparasitic agents with antiprotozoal properties (praziquantel and metronidazole); nonsteroidal anti-inflammatory drugs (NSAIDs) such as phenylbutazone and ketoprofen; the vasodilator isoxsuprine; amphiphilic antidepressants (amitriptyline); and the antiviral drug amantadine. The findings validated the crucial influence of polar multifunctionality and structural complexity in enhancing interactions with Ag.ANS-3 matrix, emphasizing its potential for efficient drug sequestration. First, picolinic acid (PA) and phenylalanine (F) were evaluated for their ability to form fibrillar structures, and their morphological characterization revealed well-defined fibrillar networks with varying degrees of porosity and interconnectivity. Then, the strategic inclusion of leucine in synthesizing ANS-3 facilitated the formation of robust fibrillar networks, employing its hydrophobic interactions to drive the self-assembly process. Finally, the encapsulation of APIs was evaluated using Ag(I) metal ion-driven ANS-3 based self-assembled nanofibrous material. This research contributes to the development of innovative physicochemical wastewater treatment strategies for environmental remediation and validates the importance of rational design in encapsulation-based wastewater remediation technologies.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).