Penta-Octa B4C2N3: A New 2D Material for High-Performance Energy Applications

IF 3.7 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Langmuir Pub Date : 2025-02-22 DOI:10.1021/acs.langmuir.4c05139
Xihao Chen, Jiazhuo Wang, Nicolas F. Martins, Julio R. Sambrano, José A. S. Laranjeira
{"title":"Penta-Octa B4C2N3: A New 2D Material for High-Performance Energy Applications","authors":"Xihao Chen, Jiazhuo Wang, Nicolas F. Martins, Julio R. Sambrano, José A. S. Laranjeira","doi":"10.1021/acs.langmuir.4c05139","DOIUrl":null,"url":null,"abstract":"Penta-octagraphene (POG) is a newly suggested two-dimensional carbon allotrope recognized for its distinct configuration and fascinating electronic characteristics. This work presents a new inorganic counterpart of POG, named POG-B<sub>4</sub>C<sub>2</sub>N<sub>3</sub>, designed through density functional theory (DFT) calculations. This new structure exhibits a direct band gap transition at the X-point, measured at 0.32/0.86 eV with PBE/HSE functionals. Mechanical properties were comprehensively assessed, showcasing its Young’s modulus (<i>Y</i><sub><i>max</i></sub>/<i>Y</i><sub><i>min</i></sub> = 157.12/100.84 N/m) and shear modulus (<i>G</i><sub><i>max</i></sub>/<i>G</i><sub><i>min</i></sub> = 83.03/38.09 N/m), alongside Poisson’s ratio (ν<sub><i>max</i></sub>/ν<sub><i>min</i></sub> = 0.58/-0.09), indicating that POG-B<sub>4</sub>C<sub>2</sub>N<sub>3</sub> is an auxetic material. Additionally, Li decoration on this monolayer was studied to investigate its potential to enhance hydrogen storage through physisorption. The Li@POG-B<sub>4</sub>C<sub>2</sub>N<sub>3</sub> system shows robust physisorption (adsorption energies ranging from −0.35 to −0.19 eV), high hydrogen storage capacity (8.35 wt %), and effective hydrogen desorption dynamics, positioning this novel material as a promising platform for reversible hydrogen storage.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"17 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c05139","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Penta-octagraphene (POG) is a newly suggested two-dimensional carbon allotrope recognized for its distinct configuration and fascinating electronic characteristics. This work presents a new inorganic counterpart of POG, named POG-B4C2N3, designed through density functional theory (DFT) calculations. This new structure exhibits a direct band gap transition at the X-point, measured at 0.32/0.86 eV with PBE/HSE functionals. Mechanical properties were comprehensively assessed, showcasing its Young’s modulus (Ymax/Ymin = 157.12/100.84 N/m) and shear modulus (Gmax/Gmin = 83.03/38.09 N/m), alongside Poisson’s ratio (νmaxmin = 0.58/-0.09), indicating that POG-B4C2N3 is an auxetic material. Additionally, Li decoration on this monolayer was studied to investigate its potential to enhance hydrogen storage through physisorption. The Li@POG-B4C2N3 system shows robust physisorption (adsorption energies ranging from −0.35 to −0.19 eV), high hydrogen storage capacity (8.35 wt %), and effective hydrogen desorption dynamics, positioning this novel material as a promising platform for reversible hydrogen storage.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
五-八拉芬(POG)是一种新提出的二维碳同素异形体,因其独特的构型和迷人的电子特性而备受关注。本研究通过密度泛函理论(DFT)计算,提出了一种新的 POG 无机对应物,命名为 POG-B4C2N3。这种新结构在 X 点显示出直接的带隙转变,用 PBE/HSE 函数测量的带隙为 0.32/0.86 eV。力学性能得到了全面评估,显示出其杨氏模量(Ymax/Ymin = 157.12/100.84 N/m)和剪切模量(Gmax/Gmin = 83.03/38.09 N/m)以及泊松比(νmax/νmin = 0.58/-0.09),表明 POG-B4C2N3 是一种辅助材料。此外,还研究了锂在该单层上的装饰,以探讨其通过物理吸附增强储氢的潜力。Li@POG-B4C2N3 系统显示出强大的物理吸附能力(吸附能在 -0.35 至 -0.19 eV 之间)、高储氢容量(8.35 wt %)和有效的氢解吸动力学,从而将这种新型材料定位为一种有前途的可逆储氢平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
期刊最新文献
Fluid Flow Measurements in Nanoslits Using Holographic Microscopy Optimized Congo Red Dye Adsorption Using ZnCuCr-Based MOF for Sustainable Wastewater Treatment Water Collection and Transport on Bioinspired Surface Integrating Beetles, Spider Webs, and Cactus Spines Molecular Insights into Interfacial Stress Amplification and Network Reinforcement in Extrudable Multiphase Vitrimers Molecular Insights into the EOR Mechanism of Water, CO2, and CO2–WAG Flooding in Heterogeneous Nanochannels: A Molecular Dynamic Simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1